ON ORDERED HARMONIC BOUNDED VARIATION

C. L. BELNA

Abstract. An example is given of a continuous real function that is of ordered harmonic bounded variation but not of harmonic bounded variation.

Let \(f \) be a real-valued function defined on \([0, 1]\), and for each open interval \(I = (a, b) \subset [0, 1] \) set \(f(I) = f(b) - f(a) \). Then \(f \) is said to be of harmonic bounded variation (HBV) on \([0, 1]\) if

\[
\sup \sum |f(I_n)|/n < \infty, \tag{\dagger}
\]

where the supremum is taken over all sequences of nonoverlapping open intervals \(I_1, I_2, \ldots \) in \([0, 1]\); if \((\dagger)\) holds when the supremum is taken over all sequences of open intervals \(I_1, I_2, \ldots \) in \([0, 1]\) for which either \(I_j < I_{j+1} \) for each index \(j \) or \(I_{j+1} < I_j \) for each index \(j \) (where \(I < J \) means \(I \) lies to the left of \(J \)), then \(f \) is said to be of ordered harmonic bounded variation (OHBV) on \([0, 1]\). These two function classes were introduced by D. Waterman in [1] and [2], respectively, and in [2] he asked whether the inclusion \(HBV \subset OHBV \) is proper. Here we show that it is.

Lemma. Let \(N \) be a nonnegative integer, \(M \) a positive integer, and \(0 < \epsilon < 1 \). Then there exists an integer \(T > M \) and a corresponding sequence of positive numbers \(A_{N+1} > A_{N+2} > \cdots > A_{N+T} \) for which the following hold:

(i) \(\sum_{j=1}^{M} A_{N+j}/j < \epsilon \),
(ii) \(\sum_{j=1}^{T} A_{N+j}/(N+j) > 1 \) but \(\sum_{j=1}^{T} A_{N+j}/j < 4 \),
(iii) \(\sum_{j=1}^{T} A_{N+i+1-i}/j < 6\epsilon \) \((1 < i < T) \).

Proof. Define \(A_{N+1} = A_{N+2} = \cdots = A_{N+M} = \epsilon/(N+M+1) \) and

\[
A_j = A_{N+j}/k \quad \text{for} \quad (N + M)2^{k-1} < j < (N + M)2^k \quad (k > 1).
\]

Noting that (i) is satisfied, we proceed to prove (ii).

First observe that if \(N + T = (N + M)2^K \quad (K > 1) \), then

\[
\sum_{j=1}^{T} A_{N+j}/(N+j) = A_{N+1} \left\{ \sum_{j=1}^{M} 1/(N+j) + \sum_{k=1}^{K} \left(\frac{1}{k} \right) \sum_{j=(N+M)2^{k-1}}^{(N+M)2^k} \right\}, \tag{*}
\]

where we use the notation \(\sum(a, b) = \sum_{j=a+1}^{b} 1/j \). For \(K = 1 \), the right-hand side of \((*)\) is \(< A_{N+1}(M+1) \), which by the definition of \(A_{N+1} \) is \(< 1 \). Also, since

Received by the editors August 1, 1979.
1980 Mathematics Subject Classification. Primary 26A45.

© 1980 American Mathematical Society
0002-9939/80/0000-0562/02.00
441

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In 2 > \sum (n, 2n) \to \ln 2 \text{ as } n \to \infty,

the second series on the right-hand side of (**) is a partial sum of a divergent series
with its kth term (k > 1) less than \((\ln 2)/2\); hence, for some \(T\) we have

\[1 < \sum_{j=1}^{T} A_{N+j}/(N+j) < 2, \]
(***)

which proves the first part of (ii). The second part follows from (***), the simple
observation that

\[\sum_{j=1}^{T} A_{N+j}/j - \sum_{j=1}^{T} A_{N+j}/(N+j) = \sum_{j=1}^{T} NA_{N+j}/j(N+j) < \sum_{j=1}^{T} \epsilon/j(N+j) < 2, \]

To begin consideration of (iii) we note that \(A_{N+t+1-j} = A_{N+j}\) for \(j < t < M,\)
and hence, that (iii) for \(1 < t < M\) follows from (i).

Now suppose \(t\) satisfies \((N + M)2^{K-1} < N + t < (N + M)2^K\) for some \(K > 1.\)
Then let \(S_n\) \((n = 1, 2, \ldots, K)\) denote the sum

\[\sum_{j} A_{N+t+1-j}/j \text{ for } (N + M)2^{K-n} < N + t + 1 - j < (N + M)2^{K-n+1}, \]

and let \(S_{K+1}\) denote this sum for \(N + 1 < N + t + 1 - j < N + M.\)

Consider \(S_1.\) For the indices \(j\) involved in this sum, we have \(A_{N+t+1-j} = A_{N+1}/K\) and hence

\[S_1 \leq (A_{N+1}/K)
\leq [(\epsilon/K(N + M + 1)] \leq 2e.\]

Similarly \(S_2 < 2e.\)

Now consider \(S_n\) for \(3 < n < K.\) Since \(A_{N+t+1-j} = A_{N+1}/(K - n + 1)\) for each
of the \((N + M)2^{K-n}\) indices \(j\) involved in \(S_n\) and since the first of these indices is
greater than \((N + M)2^{K-2},\) which is the number of terms in \(S_2,\) we see that

\[S_n \leq [A_{N+1}/(K - n + 1)] [(N + M)2^{K-n}/(N + M)2^{K-2}] \]

\[= [A_{N+1}/(K - n + 1)]/2^{n-2}. \]

Then, since \(A_{N+1} < \epsilon,\) it follows that \(S_n < \epsilon/2^{n-2}\) for \(3 < n < K.\)

Combining these estimates with the observation that \(S_{K+1}\) is dominated by
\(\sum_{j=1}^{K} A_{N+j}/j\) which by (i) is \(< \epsilon,\) we have

\[\sum_{j=1}^{T} A_{N+t+1-j}/j < 2\epsilon + 2\epsilon + \epsilon \sum_{n=3}^{K} 2^{2-n} + \epsilon < 6\epsilon, \]

and the lemma is proved.

Theorem. There exists a continuous \(f \in OHBV - HBV.\)

Proof. Choose positive numbers \(\epsilon_1, \epsilon_2, \ldots\) so that \(\sum_{n=1}^{\infty} \epsilon_n = 1.\) Then apply the
Lemma for \(N = 0, M = M_1 \equiv 1, \epsilon = \epsilon_1\) to obtain an integer \(T_1 > 1\) and a
sequence of positive numbers $A_1 > A_2 > \cdots > A_{T_1}$ such that
(i) $\sum_{j=1}^{M_2} A_j/j < \varepsilon_1$,
(ii) $1 < \sum_{j=1}^{T_2} A_j/j < 4$,
(iii) $\sum_{j=1}^{T_2} A_{T_1+j}/j < 6\varepsilon_1 (1 < t < T_1)$.
Now choose $M_2 > T_1$ so large that
$$\sum_{j=1}^{T_1} A_j/(M_2 + j) < \varepsilon_1.$$ Then apply the Lemma for $N = T_1, M = M_2, \varepsilon = \varepsilon_2$ to obtain an integer $T_2 > M_2$ and a sequence of positive numbers $A_{T_1+1} > A_{T_1+2} > \cdots > A_{T_1+T_2}$ such that
(i) $\sum_{j=1}^{M_2} A_{T_1+j}/j < \varepsilon_2$,
(ii) $1 < \sum_{j=1}^{T_2} A_{T_1+j}/(T_1 + j)$ but $\sum_{j=1}^{T_2} A_{T_1+j}/j < 4$,
(iii) $\sum_{j=1}^{T_2} A_{T_1+j+1}/j < 6\varepsilon_2 (1 < t < T_2)$.
Now choose $M_3 > T_2$ so large that
$$\sum_{j=1}^{T_2} A_{T_1+j}/(M_3 + j) < \varepsilon_2.$$ Then apply the Lemma for $N = T_1 + T_2, M = M_3, \varepsilon = \varepsilon_3$ and continue inductively to obtain: two sequences of positive integers M_1, M_2, \ldots and T_1, T_2, \ldots satisfying
$$M_k < T_k < M_{k+1} \quad (k > 1),$$ and a sequence of positive numbers A_1, A_2, \ldots satisfying
$$A_{a_k+1} > A_{a_k+2} > \cdots > A_{a_k+T_k} \left(\sigma_k \equiv \sum_{j=0}^{k-1} T_j; T_0 \equiv 0; k > 1 \right)$$ such that
(a) $\sum_{j=1}^{M_k} A_{a_k+j}/j < \varepsilon_k$,
(b) $\sum_{j=1}^{T_k} A_{a_k+j}/(\sigma_k + j) > 1$ but $\sum_{j=1}^{T_k} A_{a_k+j}/j < 4$,
(c) $\sum_{j=1}^{T_k} A_{a_k+j}/(M_{k+1} + j) < \varepsilon_k$,
(d) $\sum_{j=1}^{M_k} A_{a_k+i+j+1}/j < 6\varepsilon_k (1 < i < T_k)$.

Now we proceed to define the desired function. Inductively we obtain a sequence of mutually disjoint closed intervals $I_n \equiv [a_n, b_n]$ contained in $(0, 1)$ such that for each index k we have
$$I_i < I_{a_k+i} < I_{a_k+i+1} \quad (j = 1, 2, \ldots, T_k - 1; i > \sigma_{k+1}).$$ Then we define $f(x) = 0$ if $x \notin (a_n, b_n)$ for each n, $f((a_n + b_n)/2) = A_n$, and linearly extend f to the remainder of $[0, 1]$.

For each index n set $I_n^* = (a_n, (a_n + b_n)/2)$ and note that, by the first inequality in (b), we have
$$\sum_{n=1}^{\infty} f(I_n^*)/n = \sum_{n=1}^{\infty} A_n/n = \sum_{k=1}^{\infty} \sum_{j=1}^{T_k} A_{a_k+j}/(\sigma_k + j) = \infty;$$ that is, $f \notin HBV$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
To show that $f \in OHBV$, it suffices to prove the finiteness of the supremum of the sums $\sum f(J_n)/n$ taken over all ordered sequences of intervals J_1, J_2, \ldots from the collection $(I_*)_{n=1}^{\infty}$.

First suppose $J_1 > J_2 > \cdots$. Then it follows readily from (d) that

$$\sum_{k=1}^{\infty} f(J_n)/n < 6 \sum_{k=1}^{\infty} e_k = 6.$$

Now suppose $J_1 < J_2 < \cdots$. Choose an integer k_0 and let $J_{n_0+1}, J_{n_0+2}, \ldots, J_{n_0+t_0}$ be the J_n's that equal one of the intervals $I_{*n_0+j} (j = 1, 2, \ldots, T_{k_0})$. Since $A_{*n_0+j} > A_{*n_0+j+1} (j = 1, 2, \ldots, T_{k_0} - 1)$, we have

$$\Sigma_0 \equiv \sum_{j=1}^{t_0} f(J_{n_0+j})/ (n_0 + j) < \sum_{j=1}^{t_0} A_{*n_0+j}/j.$$

Hence, if $t_0 < M_{k_0}$, it follows from (a) that $\Sigma_0 < e_{k_0}$. Now consider the case $t_0 > M_{k_0}$. By the second inequality in (b), we have $\Sigma_0 < 4$; furthermore, if J_{n_0+i}, J_{n_0+i+1} (p < i < q) are the J_n's that equal one of the intervals $I_{*n_0+j} (j = 1, 2, \ldots, T_k)$ for a fixed $k < k_0$, then since $A_{*k_0+j} > A_{*k_0+j+1} (j = 1, 2, \ldots, T_k)$ we have

$$\sum_{j=p}^{q} f(J_{n_0+i})/ (n_0 + i + j) < \sum_{j=1}^{q-p+1} A_{*k_0+j}/ (M_{k_0} + j) < e_k,$$

where the last inequality follows from (c) and the fact that $M_{k_0} > M_{k+1}$ for $k < k_0$. Consequently,

$$\sum f(J_n)/n < 4 + \sum_{k=1}^{\infty} e_k = 5,$$

and $f \in OHBV$.

The author wishes to thank A. Deacon who, via the computer, helped determine that an earlier attempt at such an example was insufficient.

REFERENCES

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210