Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Concerning Daniljuk's existence theorem for free boundary value problems with the Bernoulli condition


Author: Andrew Acker
Journal: Proc. Amer. Math. Soc. 80 (1980), 451-454
MSC: Primary 49B21; Secondary 35R35, 76B99
DOI: https://doi.org/10.1090/S0002-9939-1980-0581003-0
MathSciNet review: 581003
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a variational method proposed by Ī. Ī. Daniljuk for proving the existence of free boundaries satisfying the Bernoulli condition is not valid under the condition given by Daniljuk.


References [Enhancements On Off] (What's this?)

  • [1] A. Acker, Heat flow inequalities with applications to heat flow optimization problems, SIAM J. Math. Anal. 8 (1977), 604-618. MR 0473960 (57:13618)
  • [2] -, A free-boundary optimization problem involving weighted areas, Z. Angew Math. Phys. 29 (1978), 395-408. MR 0482457 (58:2524a)
  • [3] -, Interior free boundary-value problems for the Laplace equation, Arch. Rational Mech. Anal. (to appear).
  • [4] A. Beurling, On free-boundary problems for the Laplace equation, Seminars on Analytic Functions, vol. 1, Inst. for Advanced Study, Princeton, N. J., 1957, pp. 248-263.
  • [5] Ī. Ī. Daniljuk, On a nonlinear problem with free boundary, Dokl. Akad. Nauk SSSR 162 (1965), 979-982. (Russian) MR 0186825 (32:4280)
  • [6] -, An existence theorem in a certain nonlinear problem with free boundary, Ukrain. Math. Ž. 20 (1968), no. 1, 25-33. (Russian) MR 0224857 (37:456)
  • [7] -, A certain class of nonlinear problems with free boundary, Mathematical Physics, No. 7, Naukova Dumka, Kiev, 1970, pp. 65-85. (Russian) MR 0273896 (42:8772)
  • [8] P. R. Garabedian, Partial differential equations, Wiley, New York, London, Sydney, 1964. MR 0162045 (28:5247)
  • [9] P. R. Garabedian, H. Lewy and M. Schiffer, Axially symmetric cavitational flow, Ann. of Math. 56 (1952), 560-602. MR 0053684 (14:810c)
  • [10] D. Riabouchinsky, Sur un problème de variation, C. R. Acad. Sci. Paris Sér. A-B 185 (1927), 840-841.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49B21, 35R35, 76B99

Retrieve articles in all journals with MSC: 49B21, 35R35, 76B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0581003-0
Keywords: Free boundary-value problem, variational methods, ideal fluid, Bernoulli condition
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society