MAD FAMILIES AND ULTRAFILTERS

MARTIN WEENSE

Abstract. For each almost disjoint family \(X \) let \(F(X) = \{a \subseteq \omega: \text{card}\{s \in X: s \setminus a \text{ is finite}\} = 2^\omega\} \), \(I(X) = \{a \subseteq \omega: \text{card}\{s \in X: \text{card}(s \cap a) = \omega\} = 2^\omega\} \). Assuming \(P(2^\omega) \) we show that for each nonprincipal ultrafilter \(p \) there exist a maximal almost disjoint family \(X \) and an almost disjoint family \(Y \) with \(F(X) = I(Y) = p \).

1. Introduction. We refer the reader to [2] for unexplained notions. Let \(A \) be a set; \(\mathcal{P}(A) \) denotes the power set of \(A \) and \(\text{card} A \) denotes the cardinality of \(A \). \(\text{Fin} \) denotes the set of finite subsets of \(\omega \). For \(a, b \in \mathcal{P}(A) \) we write \(a \subseteq b \) if \(a \setminus b \) is finite and we write \(a = b \) if \(a \subseteq b \) and \(b \subseteq a \).

Let \(X \subseteq \mathcal{P}(\omega) \setminus \text{Fin} \). \(X \) has the fip (finite intersection property) if for any finite subset \(S \) of \(X \), \(\bigcap S \) is infinite. \(X \) is almost disjoint if (i) for \(a, b \in X \) with \(a \neq b \), \(a \cap b \in \text{Fin} \) and (ii) for any finite subset \(S \) of \(X \), \(\omega \setminus \bigcup S \) is infinite. \(X \) is called mad family if it is a maximal almost disjoint family and \(X \) is called ad family if it is an almost disjoint family.

Let \(P(2^\omega) \) be the following proposition (considered by Rothberger [5]):

If \(F \subseteq \mathcal{P}(\omega) \) has the fip and \(\text{card} F < 2^\omega \) then there is \(d \in \mathcal{P}(\omega) \setminus \text{Fin} \) with \(a \subseteq b \) for each \(b \in F \).

The proposition \(P(2^\omega) \) is weaker than Martin’s axiom (see [4]).

For \(X \) an ad family we set

\[
F(X) = \{a \subseteq \omega: \text{card}\{s \in X: s \subseteq b\} = 2^\omega\};
I(X) = \{a \subseteq \omega: \text{card}\{s \in X: \text{card}(s \cap a) = \omega\} = 2^\omega\}.
\]

Then for each ad family \(X \), \(F(X) \subseteq I(X) \); for \(X \) a mad family, \(I(X) = \{a \subseteq \omega: \text{for each finite subset } S \text{ of } X, \text{card}(a \setminus \bigcup S) = \omega\} \). We show:

Theorem 1. Assume \(P(2^\omega) \). Then for any nonprincipal ultrafilter \(p \) on \(\omega \) there exists a mad family \(X \) with \(F(X) = p \).

Theorem 2. Assume \(P(2^\omega) \). Then for any nonprincipal ultrafilter \(p \) on \(\omega \) there exists an ad family \(X \) with \(I(X) = p \).

Received by the editors August 11, 1978 and, in revised form, July 16, 1979.

AMS (MOS) subject classifications (1970). Primary 02K05; Secondary 06A40, 54A25, 54D35.

Key words and phrases. Almost disjoint family, Stone-Cech compactification, \(2^\omega \)-point, superatomic Boolean algebra.

1The author wishes to thank the referee and J. E. Baumgartner for many valuable remarks.

© 1980 American Mathematical Society 0002-9939/80/0000-0570/01.75
2. Proof of Theorems 1 and 2. Let \(p \) be any nonprincipal ultrafilter on \(\omega \), let \(\{ a_i : i < 2^\omega \} \) be an enumeration of \(p \) such that for each \(b \in p \) we have \(\text{card}\{ i < 2^\omega : b = a_i \} = 2^\omega \) and let \(\{ b_i : i < 2^\omega \} \) be an enumeration of \(\{ b \subseteq \omega : b \notin p, \text{card} \, b = \omega \} \). Let \(A_k = \{ a_i : i < k \} \), \(B_k = \{ b_i : i < k \} \). We construct increasing sequences \(\{ X_i : i < 2^\omega \} \), \(\{ Y_i : i < 2^\omega \} \) of almost disjoint sets such that for each \(i < 2^\omega \):

(i) \(\text{card} \, X_i < 2^\omega \) and \(\text{card} \, Y_i < 2^\omega \);
(ii) \(X_i \cup Y_i \cap p = \emptyset \);
(iii) \(X_i \cap Y_i = \emptyset \);
(iv) there is \(c \in X_{i+1} \setminus X_i \) with \(c \subseteq a_i \);
(v) there is \(d \in Y_{i+1} \) with \(\text{card} \, (d \cap b_i) = \omega \);
(vi) for \(i < k < 2^\omega \), if \(c \in X_k \setminus X_i \), then \(\text{card} \, (c \cap b_j) < \omega \);
(vii) for \(i < k < 2^\omega \), if \(d \in Y_k \setminus Y_i \), then \(\text{card} \, (d \cap b_j) = \omega \).

Let \(X = \bigcup \{ X_i : i < 2^\omega \} \), \(Y = \bigcup \{ Y_i : i < 2^\omega \} \). Then \(X \) is an ad family and (v) implies that \(X \cup Y \) is a mad family. (iv) implies that for each \(a \in p \), \(a \in F(X) \) and \(a \in F(X \cup Y) \). (vi) implies that for each \(a \subseteq \omega \) with \(a \notin p \), \(a \notin I(X) \). (vii) implies that for each \(a \subseteq \omega \) with \(a \notin p \), \(a \notin F(X \cup Y) \). Thus \(I(X) = F(X \cup Y) = p \).

Now we describe the construction of the \(X_i \) and \(Y_i \). We set \(X_0 = Y_0 = \emptyset \).

Assume \(i < 2^\omega \) and for each \(k < i \), \(X_k \) and \(Y_k \) are constructed. For \(i \) a limit ordinal we set \(X_i = \bigcup \{ X_k : k < i \} \), \(Y_i = \bigcup \{ Y_k : k < i \} \).

Now let \(i \) be a successor ordinal, \(i = k + 1 \). Let \(S = A_i \cup \{ \omega \setminus b : b \in B_i \} \) \(\cup \{ \omega \setminus x : x \in X_k \} \). Then \(S \) has the fip and \(\text{card} \, S < 2^\omega \). \(P(2^\omega) \) implies that there is \(a \subseteq \omega \) with \(a \setminus s \in \text{Fin} \) for each \(s \in S \). Let \(a^* \subseteq a \cap a_i \) be such that \(a^* \notin p \) and \(\text{card} \, a^* = \omega \). Then we set \(X_i = X_k \cup \{ a^* \} \). Assume there is \(s \in X_i \cup Y_k \) with \(\text{card} \, (s \cap b_j) = \omega \). Then we set \(Y_i = Y_k \). Assume now that no such \(s \) exists. Let \(T = A_i \cup \{ \omega \setminus b : b \in B_i \} \) \(\cup \{ \omega \setminus x : x \in X_i \} \). Then \(T \) has the fip and \(\text{card} \, T < 2^\omega \). \(P(2^\omega) \) implies that there is \(c \subseteq \omega \) with \(c \setminus s \in \text{Fin} \) for each \(s \in T \). Let \(c^* \subseteq c \cap a \) be such that \(c^* \notin p \) and \(\text{card} \, c^* = \omega \). Then we set \(Y_i = Y_k \cup \{ c^* \cup b_j \} \). It is now easy to see that (i)-(vii) are satisfied.

3. Topological consequences. Let \(N \) be the discrete countable space and let \(\beta N \) be the Stone-Čech compactification of \(N \). Then \(\beta N \setminus N \) can be represented by the set of all nonprincipal ultrafilters over \(\omega \) and the topology generated by the following basis \(\mathcal{A} \): For each \(a \subseteq \omega \) let \(\hat{a} = \{ p \in \beta N \setminus N : a \in p \} \) and \(\mathcal{A} = \{ \hat{a} : a \subseteq \omega \} \). Then \(\hat{a} \supseteq \hat{b} \) iff \(b \subseteq^* a \). Then Theorems 1 and 2 can be reformulated as follows:

Theorem 1'. Assume \(P(2^\omega) \). Then for each \(p \in \beta N \setminus N \) there is a dense system \(\mathcal{U}_p \) of open sets such that for each \(a \subseteq \omega \), \(a \in p \) iff \(\text{card} \{ U \in \mathcal{U}_p : U \subseteq \hat{a} \} = 2^\omega \).

Theorem 2'. Assume \(P(2^\omega) \). Then for each \(p \in \beta N \setminus N \) there is a system \(\mathcal{U}_p \) of open sets such that for each \(a \subseteq \omega \), \(a \in p \) iff \(\text{card} \{ U \in \mathcal{U}_p : U \cap \hat{a} \neq \emptyset \} = 2^\omega \).

If \(p \in \beta N \setminus N \) is a \(2^\omega \)-point if there is a family \(\{ U_i : i < 2^\omega \} \) of pairwise disjoint open sets with \(p \in (\text{cl}\, \beta N U_i) \setminus N \). We can use Theorem 1 to derive the following theorem of Hindman [3] (Hindman used CH but there is little difficulty adapting his proof to \(P(2^\omega) \)):
Theorem 3. Assume $P(2^{\omega})$. Then each $p \in \beta N \setminus N$ is a 2^{ω}-point.

Proof. Let $X = \{c_i : i < 2^{\omega}\}$ be a mad family with $F(X) = p$. For each $i < 2^{\omega}$ choose an ad family $\{d_{ik} : k < 2^{\omega}\}$ with $d_{ik} \subseteq c_i$ for each $k < 2^{\omega}$. For $k < 2^{\omega}$ let

$$U_k = \bigcup \{d_{ik} : i < 2^{\omega}\}.$$

Then the U_k are pairwise disjoint open sets and p is in the closure of each U_k.

Remark. Balcar and Vojtaš [1] proved Theorem 3 without any set-theoretical assumption. It is also unknown whether Theorem 1 holds without any set-theoretical assumption.

4. Applications to superatomic Boolean algebras. Let \mathfrak{A} be a Boolean algebra. $a \in |\mathfrak{A}|$ is an atom if $a \neq 0$ and for each $b \in |\mathfrak{A}|$, $a \cap b = a$ or $a \cap b = 0$. \mathfrak{A} is atomic if for each $b \in |\mathfrak{A}|$ there is an atom a with $a < b$. \mathfrak{A} is superatomic if each homomorphic image of \mathfrak{A} is atomic. 2 denotes the two-element Boolean algebra, $\text{Pow}(\omega)$ denotes the power set Boolean algebra over ω. For $A \subseteq \text{Pow}(\omega)$ let $\text{Pow}(\omega)[A]$ denote the subalgebra of $\text{Pow}(\omega)$ generated by $A \cup \omega$. For each Boolean algebra \mathfrak{A}, $\mathfrak{A}^{(1)}$ denotes \mathfrak{A} factorized by the ideal generated by the atoms and for each $k \in \omega$ we set $\mathfrak{A}^{(k+1)} = (\mathfrak{A}^{(k)})^{(1)}$. If X is a mad family then $\text{Pow}(\omega)[X]$ is a superatomic Boolean algebra whose set of atoms is ω and $(\text{Pow}(\omega)[X])^{(2)} \approx 2$.

Theorem 4. Assume $P(2^{\omega})$. Then there are $2^{2^{\omega}}$ nonisomorphic superatomic Boolean algebras \mathfrak{A} whose set of atoms is ω and with $\mathfrak{A}^{(2)} \approx 2$.

Proof. Let \mathfrak{X} be the class of all mad families X such that $F(X)$ is a nonprincipal ultrafilter. Let $X, Y \in \mathfrak{X}$. X and Y are called equivalent if there are $a \in X, b \in Y$ and a one-one function f from a onto b such that for each $s \in X$ with $s \subseteq a$ there is $t \in Y$ with $f[s] = f[t].$ That means, X and Y are equivalent iff $F(X)$ and $F(Y)$ are equivalent with respect to the Rudin-Keisler order of ultrafilters. Now there are $2^{2^{\omega}}$ nonprincipal ultrafilters on ω and each equivalence class with respect to the Rudin-Keisler order contains 2^{ω} ultrafilters. Let $\mathfrak{Y} \subseteq \mathfrak{X}$ be such that card $\mathfrak{Y} = 2^{2^{\omega}}$ and the elements of \mathfrak{Y} are pairwise nonequivalent. Let

$$\mathfrak{F} = \{\text{Pow}(\omega)[X] : X \in \mathfrak{Y}\}.$$

Then \mathfrak{F} is the desired class of superatomic Boolean algebras.

Added in Proof. As I was informed by Baumgartner, it is impossible to prove Theorem 1 without any set-theoretical assumption.

References

HUMBOLDT-UNIVERSITÄT ZU BERLIN, UNTER DEN LINDEN 6, 108 BERLIN, GERMAN DEMOCRATIC REPUBLIC