Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Absolutely FG spaces


Author: A. H. Stone
Journal: Proc. Amer. Math. Soc. 80 (1980), 515-520
MSC: Primary 54D45
DOI: https://doi.org/10.1090/S0002-9939-1980-0581017-0
MathSciNet review: 581017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives characterizations of (a) the Hausdorff spaces that are the intersection of an open set and a closed set in every Hausdorff space containing them, (b) the spaces all of whose subspaces have the property in (a). The last extends a theorem of Herrlich, Kannan and Rajagopalan on hereditarily locally compact spaces.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, General topology, Part 1, Addison-Wesley, Reading, Mass., 1966.
  • [2] H. Herrlich, V. Kannan and M. Rajagopalan, Local compactness and simple extensions of discrete spaces, Proc. Amer. Math. Soc. 77 (1979), 421-423. MR 545607 (80k:54043)
  • [3] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. MR 0008692 (5:46e)
  • [4] C.-T. Liu, Absolutely closed spaces, Trans. Amer. Math. Soc. 130 (1968), 86-104. MR 0219024 (36:2107)
  • [5] F. Obreanu, On a problem of Aleksandrov and Urysohn, Acad. Repub. Pop. Române Bul. Şti. Ser. Mat. Fiz. Chim. 2 (1950), 101-108. MR 0045376 (13:573e)
  • [6] -, Espaces localement absolument fermés, An. Acad. Repub. Pop. Române Sect. Sti. Mat. Fiz. Chim. Ser. A 3 (1950), 375-394. MR 0044825 (13:484a)
  • [7] A. H. Stone, Absolute $ {F_\sigma }$-spaces, Proc. Amer. Math. Soc. 13 (1962), 495-499. MR 0138088 (25:1535)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D45

Retrieve articles in all journals with MSC: 54D45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0581017-0
Keywords: Absolutely closed, locally absolutely closed, absolutely locally closed, hereditarily locally compact, resolvable, maximally irresolvable
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society