Trace and the Regular Ring of a Finite AW*-Algebra

S. K. Berberian

Abstract. A finite AW*-algebra is of type I if and only if its maximal ring of quotients has a center-valued trace. In particular, a center-valued trace need not be extendible to the maximal (or classical) ring of quotients.

Let R be a ring with involution $x \mapsto x^*$ (that is, $x^{**} = x$, $(x + y)^* = x^* + y^*$ and $(xy)^* = y^*x^*$ for all x, y in R), and let Z be the center of R; we say that R has a center-valued trace if there exists a mapping $R \rightarrow Z$, denoted $x \mapsto x^*$, such that (i) $(x + y)^* = x^* + y^*$ for all x, y in R, (ii) $(xy)^* = (yx)^*$ for all x, y in R, (iii) $z^* = z$ for all $z \in Z$, and (iv) for each $x \in R$, $(x^*x)^*\xi$ is a finite sum of elements of the form z^*z with $z \in Z$ (a "positivity" condition).

Let A be a finite AW*-algebra and let C be its regular ring as constructed, for example, in [4, Chapter 8]. (Thus C is a regular Baer $*$-ring [4, Theorem 1, p. 220 and Theorem 1, p. 235]. We remark that, by a theorem of J. E. Roos [10], C may be identified with the maximal ring of quotients (right or left) of A (cf. [7], [9]). Moreover, for every $x \in C$ one can write $x = ab^{-1}$ with $a = x(1 + x^*x)^{-1}$ and $b = (1 + x^*x)^{-1}$, and one has $a^*a < 1$, $0 < b < 1$ (cf. [4, Exercise 3, p. 242]); it follows that C is a classical ring of quotients of A [8, p. 108], a remark valid with A replaced by any finite Baer $*$-ring satisfying the axioms $1^* = 6^*$ of [4, pp. 248–249]. In the foregoing remarks, statements about right quotients and left quotients are equally valid, since the involution of A extends to C.)

It is not known if, in general, A possesses a center-valued trace; it is known that a trace exists if A is of type I (cf. [2, proof of Theorem 5, p. 178]) or if A is a (finite) von Neumann algebra [6, Theorem 1, p. 288]. In the following theorem, the question of existence of trace for A is not begged; the theorem shows that even if A possesses a trace, C need not.

Theorem 1. Let A be a finite AW*-algebra, C its regular ring. In order that C admit a center-valued trace, it is necessary and sufficient that A be of type I.

Proof. The proof that C possesses a center-valued trace when A is of type I is given in [2, Theorem 5]. In general, A is the sum of a type I algebra and a type II algebra (cf. [4, Theorem 2, p. 94]); assuming A to be of type II, the proof will be completed by showing that C does not possess a center-valued trace. Let (g_n) be a sequence of pairwise orthogonal projections in A such that $\sup g_n = 1$ and $D(g_n) = 2^{-n}1$ for all $n (n = 1, 2, 3, \cdots)$, D being the center-valued dimension function.
of \(A \) [cf. 4, Theorem 1, p. 181 and Proposition 15, p. 159]. Write \(x_n = \sum_{k=1}^{n} 2^{k}g_k \), \(e_n = \sum_{k=1}^{n} g_k \); if \(m < n \) then \(x_n e_m = x_m = e_m x_n \), thus there exists \(x \in C \) such that \(x e_n = x_n \) for all \(n \) [4, Proposition 1, p. 219]. Then [4, Proposition 6, p. 242] one has \(x > 0 \) and \(x_n = x^{1/2}e_n x^{1/2} < x^{1/2}x^{1/2} = x \), thus \(0 < x_n < x \) for all \(n \). Assume to the contrary that \(C \) admits a center-valued trace \(\tau \). It follows from uniqueness of dimension that \(e^b = D(e) \) for all projections \(e \) [4, Theorem 1, p. 181]; therefore \((x_n)^b = \sum_{k=1}^{n} 2^k D(g_k) = n1 \), thus \(0 < n1 = (x_n)^b < x^b \) for all \(n \). Then \(0 < (x^b)^{-1} < (n1)^{-1} \) for all \(n \) [3, Proposition 8.12], thus \((x^b)^{-1} \in A \) and \(||(x^b)^{-1}|| < 1/n \) for all \(n \), which yields the absurdity \((x^b)^{-1} = 0 \). □

It is curious that although \(C \) does not in general possess a trace, it exhibits the following trace-like behavior: the equation \(x^*x = xx^* = 1 \) has no solution in \(C \) [5, Lemma, p. 619]. Also, Theorem 1 thwarts any prospect of proving a theorem of Fuglede type in \(C \) by means of a trace argument (cf. [2, Theorems 4 and 5], [5, Theorem 6]).

For \(A \) a finite Baer *-ring, it is not clear what “trace” should mean. The dimension function \(D \) takes its values in the space of continuous complex-valued functions \(C(\mathcal{X}) \), where \(\mathcal{X} \) is the Stone representation space (i.e., the spectrum) of the complete Boolean algebra of central projections of \(A \) [4, p. 153]. Since not every element of \(A \) need be bounded in the sense of [4, Definition 1, p. 243], and since a trace function should in some sense extend the dimension function, a good candidate for the value-space of a trace is the regular ring \(\hat{C}(\mathcal{X}) \) of the commutative AW*-algebra \(\hat{C}(\mathcal{X}) \). Let us say that \(A \) has a spectral trace if there exists a mapping \(A \rightarrow \hat{C}(\mathcal{X}) \), denoted \(x \mapsto x^b \), such that \(i \) \((x + y)^b = x^b + y^b \), \((ii) \ (xy)^b = (yx)^b \), \((iii) \ h^b = h \) for all central projections \(h \), and \((iv) \ (x^*x)^b > 0 \) for all \(x \in A \).

When \(A \) is a finite AW*-algebra, the concept of spectral trace coincides with that of center-valued trace defined earlier; for, in this case, the center \(Z \) of \(A \) may be identified with \(C(\mathcal{X}) \), and the center of \(C \) with \(\hat{C}(\mathcal{X}) \) [1, Theorem 9.2]. For \(A \) a finite Baer *-ring of type I, the construction of trace in Theorem 1 breaks down (basically because an abelian ring need not be commutative), and, as the following theorem shows, the bad news persists for rings of type II (so to speak, \(\hat{C}(\mathcal{X}) \) is no better a value space for trace, than is the center of \(C \)).

Theorem 2. If \(A \) is a finite Baer *-ring of type II, satisfying the axioms 1°–5° of [4, p. 248], then the regular ring \(C \) of \(A \) does not admit a spectral trace.

Proof. The proof proceeds as in Theorem 1, up through the point that \(0 < (x^b)^{-1} < (n1)^{-1} \) for all \(n \). In particular, \(0 < (x^b)^{-1} < 1 \), therefore there exists a projection \(e \) such that \(D(e) = (x^b)^{-1} \) [4, Theorem 3, p. 182]. Let \(f \) be a simple projection such that \(f < e \) [4, Proposition 16, p. 159], let \(h \) be the central cover of \(f \), and let \(r \) be the integer such that \(D(f) = (1/r)h \); then \(0 < (1/r)h = D(f) < D(e) = (x^b)^{-1} < (n1)^{-1} \) for all \(n \), and for \(n = 2r \) this yields \(2h < 1 \), \(h < 1 - h \), whence \(h = 0 \), a contradiction. □

References

Department of Mathematics, University of Texas, Austin, Texas 78712