TWO NEW EXTREMAL PROPERTIES
OF THE KOEBE-FUNCTION\(^{1}\)

R. KLOUTH AND K.-J. WIRTHS

Abstract. Using essentially Löwner's method the extremality of the Koebe-functions with respect to two coefficient problems for inverses of univalent functions is proved.

Let \(D = \{ z \mid |z| < 1 \} \) and \(S = \{ f \mid f \) regular and univalent in \(D, f(0) = f'(0) - 1 = 0 \} \). K. Löwner \([4]\) proved: If \(F(w) = w + \sum_{n=2}^{\infty} A_n w^n \) is the inverse of a function in \(S \), then

\[|A_n| < \frac{(2n)!}{n! (n + 1)!} \]

with equality only for the inverses of the Koebe-functions \(k_\sigma(z) = z(1 + \sigma z)^{-2}, |\sigma| = 1 \).

In this note we shall prove similar results for the functions

\[\ln F'(w), \quad \Delta(F(w), w) := \left(\frac{F''}{F'} \right)' - \frac{1}{2} \left(\frac{F''}{F'} \right)^2. \]

This work was stimulated by a conjecture of the first author (see \([2]\) and \([3]\)) and the preprint \([6]\) of a lecture given by G. Schober at the Durham Conference on Aspects of Contemporary Complex Analysis in 1979.

Theorem. Let \(F \) be the inverse of a function in \(S, K_1(w) = k_1^{-1}(w), \)

\[
\ln F'(w) = \sum_{n=1}^{\infty} B_n w^n, \quad \ln K_1(w) = \sum_{n=1}^{\infty} b_n w^n,
\]

\[
\Delta(F(w), w) = \sum_{n=0}^{\infty} C_n w^n, \quad \Delta(K_1(w), w) = \sum_{n=0}^{\infty} c_n w^n.
\]

Then \(|B_n| < b_n \) for \(n \in \mathbb{N} \) and \(|C_n| < c_n \) for \(n \in \mathbb{N} \cup \{0\} \). Equality for \(n \in \mathbb{N} \) occurs only for the functions \(K_\sigma(w) = k_\sigma^{-1}(w), |\sigma| = 1 \).

Remarks. In the case of the Schwarzian derivative \(\Delta(K_1(w), w) \) we have the simple representation \(c_n = 4^n 6(n + 1), n \in \mathbb{N} \cup \{0\} \) (see \([3]\)). The first part of the theorem implies Löwner's theorem since each \(A_n \) is a polynomial with positive coefficients in the \(B_n \).\(^{2}\)

\(^1\)This research was supported in part by the SFB 40, Theoretische Mathematik, Bonn.

\(^2\)This was pointed out by the referee.

Received by the editors November 1, 1979 and, in revised form, January 8, 1980.

1980 Mathematics Subject Classification. Primary 30C50, 30C75.

Key words and phrases. Univalent functions, Löwner's method.

\(^{1}\)This was pointed out by the referee.

© 1980 American Mathematical Society

0002-9939/80/0000-0612/001.75

594
Proof. The proof follows the same line as the famous proof of Löwner’s result (see f. i. [1], [4], [6]). So we need only give here the crucial steps.

If \(f \in S \), \(f \) can be embedded into a subordination chain. It results that \(F \), the inverse of \(f \), has a representation

\[
F(w) = \lim_{t \to \infty} \Phi(e^{-w}, t), \quad \partial \Phi(w, t)/\partial t = w(\partial \Phi(w, t)/\partial w)p(w, t) \tag{1}
\]

with

\[
p(w, t) = 1 + \sum_{n=1}^{\infty} p_n(t)w^n, \quad \text{Re} \ p(w, t) > 0 \quad \text{for} \ w \in D, \ t > 0, \ \Phi(w, 0) = w. \tag{2}
\]

(For details see [5].)

Using (1) and (2) and setting

\[
L(w, t) := \ln \frac{\partial \Phi(w, t)}{\partial w} = \sum_{n=0}^{\infty} B_n(t)w^n;
\]

\[
\Delta(w, t) := \Delta(\Phi(w, t), w) = \sum_{n=0}^{\infty} C_n(t)w^n;
\]

we get

\[
\partial L/\partial t = (\partial L/\partial w)wp + (\partial /\partial w)(wp),
\]

\[
\partial \Delta/\partial t = (\partial \Delta/\partial w)wp + 2\Delta(\partial /\partial w)(wp) + (\partial^3 /\partial w^3)(wp),
\]

\[
B_0(t) = t, \quad B_n(t) = \int_0^t e^{n(t-\tau)} \left(\sum_{j=1}^{n-1} jB_j(\tau)p_{n-j}(\tau) + (n+1)p_n(\tau) \right) d\tau, \quad n \in \mathbb{N}, \tag{3}
\]

\[
C_n(t) = \int_0^t e^{(n+2)(t-\tau)} \left(\sum_{j=0}^{n-1} C_j(\tau)p_{n-j}(\tau)(2n-j+2) + \frac{(n+3)!}{n!}p_{n+2}(\tau) \right) d\tau,
\]

\[n \in \mathbb{N} \cup \{0\}, \tag{4}
\]

\[
B_n = \lim_{t \to \infty} e^{-n}B_n(t), \quad n \in \mathbb{N}, \tag{5}
\]

\[
C_n = \lim_{t \to \infty} e^{-(n+2)/2}C_n(t), \quad n \in \mathbb{N} \cup \{0\}. \tag{6}
\]

(3) and (4) show that \(\text{Re} \ B_n(t) \), resp. \(\text{Re} \ C_n(t) \) is maximal for fixed \(t \) if and only if we choose \(B_j(\tau), \ j = 1, \ldots, n-1 \), resp. \(C_j(\tau), \ j = 0, \ldots, n-1, \ \tau \in [0, t] \) real and maximal and any \(p_j(\tau) \) involved in (3), resp. (4), equal to the constant 2. As a consequence of (5) and (6) we get that Max \(\text{Re} \ B_n \), resp. Max \(\text{Re} \ C_n \), \(n \in \mathbb{N} \), is attained if and only if \(p_1(t) \equiv 2 \) which means \(p(w, t) = (1 + w)/(1 - w) \). Now the assertion of the theorem for \(n \in \mathbb{N} \) follows from the fact that the problems of finding the maximum of the real part and the maximum of the modulus for the given coefficients are equivalent (up to a rotation).

The equality \(C_0 = -f^{(3)}(0) + \frac{3}{2}(f''(0))^2 \) shows that the remaining case is a classical inequality.
REFERENCES

Mathematisches Institut der Universität, D-53 Bonn, Federal Republic of Germany
Mathematisches Institut der Universität, D-87 Würzburg, Federal Republic of Germany