ON OPERATOR RANGES

BHUSHAN L. WADHWA

Abstract. If \(f \) is any vector-valued bounded function defined on open set \(D \) of the complex plane, and \(T \) is any bounded linear operator on a Hilbert space such that \(\sigma_R(T^*) \) is empty and if \((T - zI)f(z) = x \) for all \(z \) in \(D \) then \(f \) is analytic.

Let \(T \) be a bounded linear operator on a Hilbert space \(H \). Let \(f \) be an \(H \)-valued function defined on an open set \(D \) of the complex plane. Suppose \((T - zI)f(z) = x \) for all \(z \) in \(D \) and for a fixed \(x \) in \(H \). The question arises: What type of conditions on the operator \(T \) and on the function \(f \) will be sufficient to insure that \(f \) is analytic on \(D \)? This question has been implicitly discussed in Clancey [1], Johnson [4], Putnam [5], [6], Radjabalipour [7], and Stampfli-Wadhwa [9], [10], under various conditions related to normality on \(T \). One of the main results is: If \(T \) is a hyponormal operator \((TT^* < T^*T) \) and \(f \) is any function satisfying the above equation then \(f \) is analytic in \(D \). See [1]. On the other hand, there is a cohyponormal operator \(T \), \((T^*) \) is hyponormal) and a bounded function \(f \) satisfying the above equation which fails to be analytic on \(D \). See [6].

In this note, by a simple argument, we shall show that if \((T - zI)^2f(z) = x \) for all \(z \) in \(D \) and if \(f \) is bounded on \(D \) and \(\sigma_R(T^*) = \emptyset \) (range of \(T^* - zI \) is dense in \(H \) for all \(z \)) then \(f \) is analytic. We shall use this result to give an alternative proof of a classical result of Stampfli [8] about quadratically hyponormal operators.

The following lemma is implicitly contained in most of the references mentioned previously. We include it for the sake of completeness.

Lemma. Let \((T - zI)f(z) = x \) for all \(z \) in \(D \) be such that \(f \) is bounded and \(\sigma_R(T^*) = \emptyset \) then \(f \) is weakly continuous.

Proof. For any \(z \) and \(z_0 \) in \(D \),

\[
(f(z) - f(z_0), (T^* - z_0I)y) = ((T - z_0I)(f(z) - f(z_0)), y)
= (z - z_0)(f(z), y)
\]

for all \(y \) in \(H \).

Since \(f \) is bounded and range of \((T^* - z_0I) \) is dense in \(H \), it follows that \(f \) is weakly continuous.

Theorem. Let \(g \) be a bounded vector-valued function such that \((T - zI)^2g(z) = x \) for all \(z \) in \(D \) and let \(\sigma_R(T^*) = \emptyset \). Then \(g \) is analytic on \(D \).

Proof. Let \(f(z) = (T - zI)g(z) \). Then \((T - zI)f(x) = x \) for all \(z \) in \(D \), \(f \) is bounded and hence weakly continuous on each bounded subset \(D_0 \) of \(D \). Now for
any \(z \) and \(z_0 \) in \(D_0^* \),
\[
\left(\frac{(f(z) - f(z_0))}{(z - z_0)}, (T^* - z_0 I)y\right) = (f(z), y),
\]
and
\[
\lim_{z \to z_0} \left(\frac{(f(z) - f(z_0))}{(z - z_0)}, (T^* - z_0 I)y\right) = (f(z_0), y)
\]
\[
= \left((T - z_0 I)g(z_0), y\right) = (g(z_0), (T^* - z_0 I)y)
\]
for all \(y \) in \(H \).

Since range of \((T^* - z_0 I) \) is dense in \(H \), \(f \) is analytic and \(f'(z) = g(z) \) for all \(z \) in \(D \).

Let \(T \) be a quadratically hyponormal operator \((aT^2 + bT + cI \text{ is hyponormal for all complex numbers } a, b \text{ and } c)\). Let \(\rho(T, x) \) be the local resolvent of the vector \(x \) with respect to the operator \(T \) (see Dunford and Schwartz [3, p. 1935]).

Corollary (Stampfli [8]). If \(T \) is a quadratically hyponormal operator with \(\sigma_p(T) = \emptyset \) then \(\rho(T; x) \subset \rho(T^*, x) \). (The bar denotes the complex conjugate of the set.)

Proof. Let \(z_0 \in \rho(T, x) \); thus there exists an analytic function defined on a bounded set \(D \) containing \(z_0 \) such that \((T - zI)f(z) = x \). Since \(f \) is analytic, a simple computation shows that \((T - zI)^2f^2(z) = x \) for all \(z \) in \(D \). Since \(T \) is quadratically hyponormal, \((T - zI)^2(T^* - zI)^2 < (T^* - zI)^2(T - zI)^2 \). By Douglas [2], there is a contraction \(K(z) \) such that \((T - zI)^2 = (T^* - zI)^2K(z) \). Consequently, \((T^* - zI)^2g(z) = x \) where \(g(z) = K(z)f(z) \). Thus \(g(z) \) is bounded for \(z \in D \). Using the Theorem we conclude that \(g(z) \) is analytic for all \(z \) in \(\overline{D} \) and \((T^* - zI)(T^* - zI)g(z) = x \) for all \(z \) in \(\overline{D} \); thus \(z_0 \in \rho(T^*, x) \).

References

Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115