
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 4, December 1980

NOTE ON SEQUENCES OF MAYER-VTETORIS TYPE

ELDON DYER AND JOSEPH ROITBERG

Abstract. In this largely expository note, we reexamine the construction of the

homotopical Mayer-Vietoris sequence associated to a homotopy pullback. We

show that in this situation, the Mayer-Vietoris sequence may be realized simply as

the homotopy sequence of a suitable fibration. The usual approaches to construct-

ing the Mayer-Vietoris sequence involve some auxiliary algebraic result, such as the

Barratt-Whitehead lemma; the present approach avoids any such considerations.

An additional beneficial feature of our approach is the attention paid to the bottom

end of the Mayer-Vietoris sequence. Thus we are led to a cleaner proof of

Proposition II.7.11 of [HMR]; moreover, we show that the converse of this latter

result is also true.

The homological Mayer-Vietoris sequence associated to a homotopy pushout

may be established in a very similar manner, as we point out at the end of the

paper.

1. We work throughout in the category 5" of pointed (not necessarily path-con-

nected) topological spaces. Given B G 9", we denote by B the space of all (not

necessarily pointed) paths in B and by e: B -» B X B the "endpoints map" defined

by e(w) = (w(0), w(l)). We then have

Proposition. 77ie map e: B -> B X B is a LHurewicz) fibration with fiber ÜB, the

loop space of B. The connecting map d: 07? X ÜB = ß(7i x5)-> ÜB associated to

this fibration is given by 3(A, p) = X • p~x, that is, 8= m » (1 X (— 1)), where m is

the standard multiplication on ÜB.

The proof is standard. Nevertheless, the second assertion of the Proposition is

perhaps not as well known as it deserves to be; it forms the basis for what follows.

Consider now a diagram

X

in 5T. By its very definition, the homotopy pullback Z of (1.1) may be viewed as the

total space of the fibration induced from the fibration of the Proposition by means

of the map/ X g: X X Y -> B X B. Thus we have a commutative diagram
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l i
SifxQg
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i i
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i{u,v) le

/x*
íxr       -+       Bx b

Note that (1.1) may be completed to a homotopy-commutative diagram

Z     ^     X

iv if (1.3)

Y     X     B

and that if either / or g is a fibration, then Z is homotopy equivalent to the strict

pullback of (1.1); see [HMR].

Passing to the homotopy sequence of the fibration

ÜB-*Z  ^>   X X Y,

taking into account the commutativity of the upper square in (1.2) together with

the Proposition, we obtain

Theorem. There is a long exact sequence

... ^irn + xB^iTnZ    -*    ir„X(BirnY    -*   irnB -+ • • •

-+it2B-+itxZ    ->    irxX X irx Y    -*   irxB -» w0Z-> irQ(X X Y).

This may be taken to be the definition of the Mayer-Vietoris sequence associated

to the homotopy pullback (1.3). It is a simple matter to check that this sequence

agrees with the usual Mayer-Vietoris sequence, as derived, for example, in [EH].

By studying the bottom end of our Mayer-Vietoris sequence, the following

consequence is deduced.

Corollary. If, in (1.3), X and Y are path-connected and every y E irxB is

expressible in the form y = fma • g^ß for some a E irxX, ß EirxY, then Z is

path-connected.

Conversely, if Z is path-connected, then every y E irxB is expressible in the farm

y = /»a • g+ß for some a E nxX, ß E irx Y; if, in addition, B is path-connected, then

X and Y are also path-connected.

The first assertion of the Corollary is Proposition II.7.11 of [HMR]. (The latter

unnecessarily stipulates that B be path-connected.) The converse does not seem to

have been previously noted, at least in print.
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2. It is quite straightforward to dualize the constructions of §1 so as to realize the

Mayer-Vietoris sequence associated to a homotopy pushout as the homology

sequence of a suitable cofibration. The dual of the "universal example" fibration e:

B -> B X B is the "universal example" cofibration i: A V A -> cyl A, cylA de-

notes the reduced cylinder over A and i the natural inclusion.1 The cofiber of í is

SA, the reduced suspension of A and the associated connecting map 8: 'S,A -»

2(/l V A) = SA V 2/1 is given by composing the standard comultiplication c:

SA^SAy SA with the map 1 V (-1): SA V2/1 -»SA V2^4, as is readily

seen. We may safely leave further details of the dualization of §1 to the reader.

(Observe that the Corollary of § 1 has no analogue here.)
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'Actually, in order to insure that i is a cofibration, it should be assumed that the basepoint of A is

cofibered in A. Alternatively, we could work in the category of unpointed topological spaces and replace

i by the natural inclusion of the disjoint union A + A into the cylinder A X I.


