ON NOWHERE DENSE CCC P-SETS

ALAN DOW AND JAN VAN MILL

Abstract. We prove that no compact Hausdorff space can be covered by nowhere dense ccc P-sets. As an application it follows that if \(X \) is a compact Hausdorff space with a nonisolated \(P \)-point then \(X \times K \) is not homogeneous for any compact ccc space \(K \).

1. Introduction. All spaces under discussion are Tychonoff.

A subset \(B \) of a space \(X \) is called a P-set whenever the intersection of countably many neighborhoods of \(B \) is again a neighborhood of \(B \). It is known that no compact space of \(\pi \)-weight \(\omega_1 \) can be covered by nowhere dense P-sets [KvMM]. In addition, there is a compact space of weight \(\omega_2 \) which can be covered by nowhere dense P-sets [KvMM]. In this note we will show that no compact space can be covered by nowhere dense ccc P-sets. As a consequence it follows that if \(X \) is a compact space with a nonisolated \(P \)-point then \(X \times K \) is not homogeneous for any compact ccc space \(K \).

2. Independent matrices. Let \(X \) be a space. An indexed family \(\{A^i_j : i \in I, j \in J\} \) is called an \(I \) by \(J \) independent matrix for \(X \) provided that

(a) each \(A^i_j \) is an open \(F_{n \alpha} \);
(b) if \(i \in I \) and \(j_0, j_1 \) are distinct elements of \(J \) then \(A_{i_0}^i \cap A_{i_1}^i = \emptyset \);
(c) if \(F \subset I \) is finite and \(\varphi : F \rightarrow J \) then \(\bigcap_{i \in F} A_{\varphi(i)}^i \neq \emptyset \).

This concept, in a slightly different form, is due to Kunen.

In [vM4] it was shown that each compact space in which each nonempty \(G_\delta \) has nonempty interior contains an \(\omega_1 \) by \(\omega_1 \) independent matrix. We need a generalization of this result. As usual, a space is called ccc if each pairwise disjoint collection of nonempty open sets is countable. A space is nowhere ccc if no point has a ccc neighborhood.

2.1. Theorem. Suppose that \(X \) is nowhere ccc. Then \(X \) contains an \(\omega_1 \) by \(\omega_1 \) independent matrix.

Proof. For each finite subset \(F \subset \omega_1 \) (possibly empty) we will define an open \(F_{n \alpha} \), \(C_F \subset X \), such that

(i) \(C_{F \cup (\alpha)} \subset C_F \) for all \(\max F < \alpha < \omega_1 \);
(ii) \(C_{F \cup (\alpha)} \cap C_{F \cup (\beta)} = \emptyset \) if \(\max F < \alpha < \beta < \omega_1 \)

(as usual, an ordinal is the set of smaller ordinals; we define \(\max \emptyset = -1 \)).

We will induct on the cardinality of \(F \). Define \(C_{\emptyset} = X \).
Suppose that we have defined C_F for all $F \subseteq \omega_1$ of cardinality n. Let $\{C_{F \cup \{a\}}: \max F < a < \omega_1\}$ be a “faithfully indexed” collection of pairwise disjoint non-empty open F_s's of C_F. This completes the induction.

Fact. $C_F \cap C_G = \emptyset \rightarrow (F \subseteq G) \lor (G \subseteq F)$.

We induct on the cardinality of $|F| + |G|$. If $|F| + |G| = 1$ then there is nothing to prove. Suppose that we have proved the Fact for all finite sets $F, G \subseteq \omega_1$ satisfying $|F| + |G| < n - 1$. Now take finite sets $S, T \subseteq \omega_1$ so that $|S| + |T| < n$. Define $S' = S - \{\max S\}$. By (i) we have that $C_S \subseteq C_{S'}$; and consequently $C_{S'} \cap C_T = \emptyset$. By induction hypothesis, $S' \subseteq T$ or $T \subseteq S'$. If $T \subseteq S'$ then we are done, so we may assume that $S' \subseteq T$. Define $T' = T - \{\max T\}$. By precisely the same argumentation we may conclude that $T' \subseteq S$. Then clearly

$$(S \cap T) \cup \{\max S\} = S \quad \text{and} \quad (S \cap T) \cup \{\max T\} = T.$$

If $\max S \in T$ or $\max T \in S$ then there is nothing to prove. So assume that this is not true. Then by (ii) we have that $C_S \cap C_T = \emptyset$, which is a contradiction.

Let $f: \omega_1 \to \omega_1 \times \omega_1$ be onto and one-to-one. Define $U^a_\beta = \{C_{F \cup \{f^{-1}(\langle a, \beta \rangle)\}}: \max F < f^{-1}(\langle a, \beta \rangle)\}$ and $f[F] \cap \{(\alpha) \times \omega_1\} = \emptyset$. Notice that $C_{f^{-1}(\langle a, \beta \rangle)} \subseteq U^a_\beta$. We claim that $\{U^a_\beta: a, \beta < \omega_1\}$ is an ω_1 by ω_1 independent matrix for X. First observe that each U^a_β is an open F_s being the union of at most countably many open F_s's.

Now, let us assume that $U^a_\beta \cap U^a_\gamma = \emptyset$ for some $\beta \neq \gamma$. Without loss of generality assume that $f^{-1}(\langle a, \beta \rangle) < f^{-1}(\langle a, \gamma \rangle)$. There are finite sets $F_0, F_1 \subseteq \omega_1$ so that

(a) $C_{F_0 \cup \{f^{-1}(\langle a, \beta \rangle)\}} \cap C_{f^{-1}(\langle a, \gamma \rangle)} = \emptyset$;
(b) $\max F_0 < f^{-1}(\langle a, \beta \rangle)$ and $f[F_0] \cap \{(\alpha) \times \omega_1\} = \emptyset$;
(c) $\max F_1 < f^{-1}(\langle a, \gamma \rangle)$ and $f[F_1] \cap \{(\alpha) \times \omega_1\} = \emptyset$.

Since $f^{-1}(\langle a, \gamma \rangle) \notin F_0 \cup \{f^{-1}(\langle a, \beta \rangle)\}$, by the Fact, $F_0 \cup \{f^{-1}(\langle a, \beta \rangle)\} \notin F_1 \cup \{f^{-1}(\langle a, \gamma \rangle)\}$. Therefore $f^{-1}(\langle a, \beta \rangle) \in F_1$, since $f^{-1}(\langle a, \beta \rangle) \neq f^{-1}(\langle a, \gamma \rangle)$. However, this contradicts (c).

Take $\alpha_1, \ldots, \alpha_n < \omega_1$ so that $\alpha_i \neq \alpha_j$ for $i \neq j$. In addition, take $\beta_i < \omega_1$ ($i < n$) arbitrarily. Put $\gamma_i = f^{-1}(\langle \alpha_i, \beta_i \rangle)$ and without loss of generality assume that $\gamma_1 < \gamma_2 < \cdots < \gamma_n$. Then $C_{\langle \gamma_1, \ldots, \gamma_n \rangle} \subseteq U^a_{\beta_1} \cap \cdots \cap U^a_{\beta_n}$, and since $C_{\langle \gamma_1, \ldots, \gamma_n \rangle} \neq \emptyset$ we find that $U^a_{\beta_1} \cap \cdots \cap U^a_{\beta_n} \neq \emptyset$.

3. The first application. A point $x \in X$ is called a weak P-point provided that $x \notin F$ for each countable $F \subseteq X - \{x\}$. Kunen [K] proved that there is a weak P-point in $\omega^* (= \beta\omega \setminus \omega)$. Subsequently van Mill [vM_1] proved that there is a weak P-point in each compact F-space of weight 2^ω in which each nonempty G_δ has nonempty interior (an F-space is a space in which each cozero set is C^*-embedded). Bell [B] has since shown that the weight condition is superfluous. Using Theorem 2.1 by precisely the same technique as in [vM_1] we obtain the following generalization.

3.1. **Theorem.** Each compact nowhere ccc F-space contains a weak P-point.

4. The main result. In this section we derive our main result. The techniques of proof used in the following lemma is the same as in [vM_1], [vM_2].
4.1. Lemma. No compact nowhere ccc space can be covered by ccc P-sets.

Proof. Let \(X \) be a compact nowhere ccc space. Clearly \(X \) is not finite, so there is a collection \(\{ V_n : n < \omega \} \) of (faithfully indexed) pairwise disjoint nonempty open \(F_n \) subsets of \(X \). For each \(n < \omega \) let \(\{ U^i_{\alpha}(n) : \alpha < \omega_1, i < \omega \} \) be an \(\omega_1 \) by \(\omega \) independent matrix for \(V_n \) (Theorem 1.1). Notice that each \(U^i_{\alpha}(n) \) is an open \(F_n \) of \(X \). Put \(\mathcal{F} = \{ A \subset X : \forall n < \omega \, \forall i < n \, \exists \alpha < \omega_1 \text{ such that } U^i_{\alpha}(n) \subset A \} \). It is clear that \(\mathcal{F} \) has the finite intersection property, so there is an \(x \in \bigcap_{F \in \mathcal{F}} F \). We claim that \(x \notin K \) for each ccc P-set \(K \). Indeed, let \(K \subset X \) be any ccc P-set. Since \(K \) is ccc for each \(n < \omega \) and for each \(i < n \) there is an \(\alpha(n, i) < \omega_1 \) so that

\[
U^i_{\alpha(n,i)}(n) \cap K = \emptyset.
\]

Put \(F = \bigcup_{n<\omega} \bigcup_{i<n} U^i_{\alpha(n,i)}(n) \). Then \(F \in \mathcal{F} \) and \(F \) is an open \(F_n \) being the union of countably many open \(F_n \)'s. Also, \(F \cap K = \emptyset \). Since \(K \) is a P-set, it also follows that \(F \cap K = \emptyset \). We conclude that \(x \notin K \).

We now come to our main result.

4.2. Theorem. No compact space can be covered by ccc nowhere dense P-sets.

Proof. Let \(X \) be a compact space and suppose that \(X \) can be covered by ccc nowhere dense P-sets. Let \(U \subset X \) be nonempty and open and suppose that \(U \) is ccc. Let \(B \) be a nowhere dense P-set meeting \(U \). Since \(B \cap U \) is nowhere dense in \(U \) the fact that \(U \) is ccc implies that there is a countable family \(\mathcal{G} \) of compact subsets of \(U - B \) so that \(\bigcup \mathcal{G} \) is dense in \(U \). However, this is impossible since \(B \) is a P-set. So \(U \) is not ccc. But now the assumption that \(X \) can be covered by ccc nowhere dense P-sets contradicts Lemma 4.1.

5. Another application. A space \(X \) is called homogeneous provided that for all \(x, y \in X \) there is an autohomeomorphism \(\varphi \) from \(X \) onto \(X \) mapping \(x \) onto \(y \). It is well known that although \(X \) is not homogeneous the product \(X \times K \) can be homogeneous for certain \(K \) (for example, let \(X \) be a convergent sequence and let \(K \) be the Cantor set). This makes the following straightforward corollary to Theorem 4.2 of some interest.

5.1. Corollary. Let \(X \) be a compact space having a nonisolated P-point. Then \(X \times K \) is not homogeneous for any compact ccc nonempty space \(K \).

Proof. Let \(x \) be a nonisolated P-point of \(X \). Then \(\{ x \} \times K \) is a ccc nowhere dense P-set of \(X \times K \). Take any \(\langle x, y \rangle \in \{ x \} \times K \). By Theorem 4.2 there is a point \(\langle p, q \rangle \in X \times K \) so that \(\langle p, q \rangle \notin E \) for any nowhere dense ccc P-set \(E \subset X \times K \). It is clear that no autohomeomorphism of \(X \times K \) can map \(\langle x, y \rangle \) onto \(\langle p, q \rangle \).

6. Questions. Since there is a compact space \(X \) of weight \(\omega_2 \) which can be covered by nowhere dense P-sets (which all have to have cellularity at most \(\omega_2 \)), Theorem 4.2 suggests the following question:

6.1. Question. Is there a compact space \(X \) which can be covered by nowhere dense P-sets of cellularity at most \(\omega_1 \)?
Since Frankiewicz and Mills [FM] have shown that Con(ZFC + ω^* can be covered by nowhere dense P-sets) the question naturally arises whether it is consistent that ω^* can be covered by nowhere dense P-sets of cellularity at most ω_1.

Let us answer this question.

6.2. **Proposition.** ω^* cannot be covered by nowhere dense P-sets of cellularity at most ω_1.

Proof. Under CH the result follows from [KvMM]. So assume \negCH. Kunen [K] proved that (in ZFC) there is a 2^ω by 2^ω independent matrix of clopen subsets of ω^*. Since $\omega_1 < 2^\omega$ we can use the same proof as in Lemma 4.1 to get a point $x \in \omega^*$ so that $x \not\in B$ for any P-set B of cellularity at most ω_1. □

Let us finally notice that Proposition 5.1 suggests the following question.

6.3. **Question.** Let X be a compact space having a nonisolated P-point and let K be compact. Is $X \times K$ not homogeneous?

References

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

(Current address of Alan Dow)

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

(Current address (Jan van Mill): Department of Mathematics, Vrije Universiteit, Amsterdam, The Netherlands)