Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Another graded algebra with a nonrational Hilbert series

Author: Yuji Kobayashi
Journal: Proc. Amer. Math. Soc. 81 (1981), 19-22
MSC: Primary 16A03; Secondary 20M05
MathSciNet review: 589129
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently J. B. Shearer has constructed a graded algebra with a nonrational Hilbert series, a counterexample to Govorov's conjecture. In this note we give a simpler example.

References [Enhancements On Off] (What's this?)

  • [1] J. Backelin, La série de Poincaré-Betti d'une algèbre graduée de type fini à une relation est rationnelle, C. R. Acad. Sci. Paris Ser. A 287 (1978), 843-846. MR 551760 (81f:16002)
  • [2] V. E. Govorov, Graded algebras, Math. Notes 12 (1972), 552-556. (Transl. of Mat. Zametki 12 (1972), 197-204). MR 0318199 (47:6746)
  • [3] -, On the dimension of graded algebras, Math. Notes 14 (1973), 678-682. (Transl. of Mat. Zametki 14 (1973), 209-216.) MR 0332876 (48:11201)
  • [4] Y. Kobayashi, The Hilbert series of some graded algebras and the Poincaré series of some local rings, Math. Scand. 42 (1978), 19-33. MR 0485841 (58:5643)
  • [5] J. E. Roos, Relations between the Poincaré-Betti series of loop spaces and of local rings, Lecture Notes in Math., Vol. 740, Springer-Verlag, Berlin and New York, 1979, pp. 285-322. MR 563510 (81g:55019)
  • [6] J. B. Shearer, A graded algebra with a non-rational Hilbert series, J. Algebra 62 (1980), 228-231. MR 561125 (81b:16002)
  • [7] V. A. Ufnarovsky, On algebras' growth, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1978, no. 4, 59-65. (Russian)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A03, 20M05

Retrieve articles in all journals with MSC: 16A03, 20M05

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society