Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An upper bound for the sum of large differences between prime numbers


Author: R. J. Cook
Journal: Proc. Amer. Math. Soc. 81 (1981), 33-40
MSC: Primary 10H15
DOI: https://doi.org/10.1090/S0002-9939-1981-0589132-3
MathSciNet review: 589132
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {p_n}$ denote the $ n$th prime number, $ {d_n} = {p_{n + 1}} - {p_n}$. We estimate the sum $ \Sigma {d_n}$ taken over $ {p_n} \leqslant x,{d_n} > {x^\mu }$ where $ 1/6 < \mu < 5/9$.


References [Enhancements On Off] (What's this?)

  • [1] K. Chandrasekharan, Arithmetical functions, Die Grundlehren der Math. Wissenschaften, Band 167, Springer-Verlag, New York and Berlin, 1970. MR 0277490 (43:3223)
  • [2] R. J. Cook, On the occurrence of large gaps between prime numbers, Glasgow Math. J. 20 (1979), 43-48. MR 523787 (80e:10034)
  • [3] H. Cramér, Some theorems concerning prime numbers, Ark. Mat. 15 (1920), 1-32.
  • [4] -, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937), 23-46.
  • [5] H. Davenport, Multiplicative number theory, Markham, Chicago, Ill., 1967. MR 0217022 (36:117)
  • [6] G. Halász and P. Turán, On the distribution of the roots of the Riemann zeta and allied functions. I, J. Number Theory 1 (1969), 121-137. MR 0236124 (38:4422)
  • [7] D. R. Heath-Brown, The differences between consecutive primes, J. London Math. Soc. 18 (1978), 7-13. MR 0491554 (58:10787)
  • [8] -, The differences between consecutive primes. II, J. London Math. Soc. 19 (1979), 207-220. MR 533319 (80k:10041)
  • [9] -, Zero-density estimates for the Riemann zeta-function and Dirichlet $ L$-functions, J. London Math. Soc. 19 (1979), 221-232. MR 533320 (80i:10055)
  • [10] M. N. Huxley, On the differences between consecutive primes, Invent. Math. 15 (1972), 164-170. MR 0292774 (45:1856)
  • [11] -, A note on large gaps between prime numbers, Acta Arith. 38 (1980), 63-68. MR 574125 (82a:10046)
  • [12] A. E. Ingham, On the estimation of $ N(\sigma ,T)$, Quart. J. Math. Oxford Ser. 11 (1940), 291-292. MR 0003649 (2:249e)
  • [13] A. Ivić, On sums of large differences between consecutive primes, Math. Ann. 241 (1979), 1-9. MR 531146 (80i:10057)
  • [14] M. Jutila, Zero-density estimates for $ L$-functions, Acta Arith. 32 (1977), 55-62. MR 0429790 (55:2800)
  • [15] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., vol. 227, Springer-Verlag, Berlin, Heidelberg and New York, 1971. MR 0337847 (49:2616)
  • [16] C. J. Moreno, The average size of gaps between primes, Mathematika 21 (1974), 96-100. MR 0404169 (53:7972)
  • [17] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105. MR 0012624 (7:48e)
  • [18] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford Univ. Press, Oxford, 1951. MR 0046485 (13:741c)
  • [19] R. Warlimont, Über die Haufigkeit grosser Differenzen konsecutiver Primzahlen, Monatsh. Math. 83 (1977), 59-63. MR 0444588 (56:2938)
  • [20] D. Wolke, Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975), 269-271. MR 0453670 (56:11930)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10H15

Retrieve articles in all journals with MSC: 10H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0589132-3
Keywords: Prime number, density theorem
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society