Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform approximation by rational modules on nowhere dense sets


Authors: Tavan Trent and James Li Ming Wang
Journal: Proc. Amer. Math. Soc. 81 (1981), 62-64
MSC: Primary 30E10; Secondary 46E15
DOI: https://doi.org/10.1090/S0002-9939-1981-0589136-0
MathSciNet review: 589136
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the rational module $ \mathcal{R}(X)un{k_1}$ is always uniformly dense in $ C(X)$ if the compact set $ X$ has no interior.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Davie, Bounded approximation and Dirichlet sets, J. Functional Analysis 6 (1970), 460-467. MR 0275168 (43:925)
  • [2] A. O'Farrell, Annihilators of rational modules, J. Functional Analysis 19 (1975), 373-389. MR 0380428 (52:1328)
  • [3] J. Wang, Approximation by rational modules on nowhere dense sets, Pacific J. Math. 80 (1979), 293-295. MR 534719 (80g:30026)
  • [4] J. Wang, The closures of rational modules, Pacific J. Math. (to appear). MR 663651 (83k:46043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E10, 46E15

Retrieve articles in all journals with MSC: 30E10, 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0589136-0
Keywords: Rational module, Cauchy transform, annihilating measure
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society