Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A lower bound for the fundamental frequency of a convex region


Author: M. H. Protter
Journal: Proc. Amer. Math. Soc. 81 (1981), 65-70
MSC: Primary 35P15
MathSciNet review: 589137
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A lower bound for the first eigenvalue of the Laplace operator is obtained in terms of the radius of the largest ball which can be inscribed in a convex region in $ {R^n}$, $ n \geqslant 2$.


References [Enhancements On Off] (What's this?)

  • [1] W. K. Hayman, Some bounds for principal frequency, Applicable Anal. 7 (1977/78), no. 3, 247–254. MR 0492339
  • [2] Joseph Hersch, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys. 11 (1960), 387–413 (French, with English summary). MR 0125319
  • [3] Robert Osserman, A note on Hayman’s theorem on the bass note of a drum, Comment. Math. Helv. 52 (1977), no. 4, 545–555. MR 0459099
  • [4] Robert Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1–29. MR 519520, 10.2307/2320297
  • [5] L. E. Payne and I. Stakgold, On the mean value of the fundamental mode in the fixed membrane problem, Applicable Anal. 3 (1973), 295–306. Collection of articles dedicated to Alexander Weinstein on the occasion of his 75th birthday. MR 0399633
  • [6] M. H. Protter, Lower bounds for the first eigenvalue of elliptic equations, Ann. of Math. (2) 71 (1960), 423–444. MR 0111923
  • [7] Michael E. Taylor, Estimate on the fundamental frequency of a drum, Duke Math. J. 46 (1979), no. 2, 447–453. MR 534061

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35P15

Retrieve articles in all journals with MSC: 35P15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0589137-2
Article copyright: © Copyright 1981 American Mathematical Society