Some properties of closed -forms on a special Riemannian manifold

Author:
Gr. Tsagas

Journal:
Proc. Amer. Math. Soc. **81** (1981), 104-106

MSC:
Primary 53C20

MathSciNet review:
589147

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact Riemannian manifold whose sectional curvature is strictly negative; then every closed -form on has a singularity.

**[1]**R. L. Bishop and B. O’Neill,*Manifolds of negative curvature*, Trans. Amer. Math. Soc.**145**(1969), 1–49. MR**0251664**, 10.1090/S0002-9947-1969-0251664-4**[2]**William P. Byers,*On a theorem of Preissmann*, Proc. Amer. Math. Soc.**24**(1970), 50–51. MR**0251665**, 10.1090/S0002-9939-1970-0251665-X**[3]**F. T. Farrell,*The obstruction to fibering a manifold over a circle*, Indiana Univ. Math. J.**21**(1971/1972), 315–346. MR**0290397****[4]**Detlef Gromoll and Joseph A. Wolf,*Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature*, Bull. Amer. Math. Soc.**77**(1971), 545–552. MR**0281122**, 10.1090/S0002-9904-1971-12747-7**[5]**Sze-tsen Hu,*Homotopy theory*, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR**0106454****[6]**J. Milnor,*Morse theory*, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR**0163331****[7]**J. Milnor,*A note on curvature and fundamental group*, J. Differential Geometry**2**(1968), 1–7. MR**0232311****[8]**John Milnor,*Growth of finitely generated solvable groups*, J. Differential Geometry**2**(1968), 447–449. MR**0244899****[9]**Grigorios Tsagas,*On the singularities of harmonic 1-forms on a Riemannian manifold*, Kōdai Math. Sem. Rep.**26**(1975), no. 4, 459–466. MR**0394506****[10]**D. Tischler,*On fibering certain foliated manifolds over 𝑆¹*, Topology**9**(1970), 153–154. MR**0256413****[11]**Joseph A. Wolf,*Growth of finitely generated solvable groups and curvature of Riemanniann manifolds*, J. Differential Geometry**2**(1968), 421–446. MR**0248688****[12]**Shing-tung Yau,*On the fundamental group of compact manifolds of non-positive curvature*, Ann. of Math. (2)**93**(1971), 579–585. MR**0283726**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53C20

Retrieve articles in all journals with MSC: 53C20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1981-0589147-5

Keywords:
Riemannian manifold,
closed -form,
harmonic -form,
negative -pinched,
singularity of -forms.

Article copyright:
© Copyright 1981
American Mathematical Society