ON INSERTION OF A CONTINUOUS FUNCTION

M. POWDERLY

Abstract. Recently E. P. Lane proved that if space X has the weak C-insertion property and satisfies another condition, then X has the strong C-insertion property. This paper establishes the converse of this result.

In a recent paper, E. P. Lane [1] established two main results about the insertion of continuous functions. The second of these is:

Theorem 3.1. Let P_1 and P_2 be C-properties and consider the following condition:

(a) If g and f are functions on X such that $g < f$, g satisfies property P_1, and f satisfies property P_2, then there exists a sequence $\{A(f - g, 2^{-n})\}$ of lower cut sets for $f - g$ and there exists a sequence $\{F_n\}$ of subsets of X such that

(i) $\{x/(f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$, and

(ii) for each n the sets $A(f - g, 2^{-n})$ and F_n are completely separated.

If X satisfies the weak C-insertion property for (P_1, P_2) and if X satisfies (a), then X satisfies the strong C-insertion property for (P_1, P_2). Conversely, if X satisfies the strong C-insertion property for (P_1, P_2) and $f - g$ satisfies the property P_1 (actually P_1 should have read P_2), then X satisfies (a).

This paper shows that the last sentence of the above theorem can be strengthened to read:

Conversely, if X satisfies the strong C-insertion property for (P_1, P_2), then X satisfies (a). Thus (a) is a necessary and sufficient condition for a space with the weak C-insertion property to have the strong C-insertion property.

A property P defined relative to a real-valued function on a topological space is a C-property provided any constant function has property P and provided the sum of a function with property P and any continuous function also has property P. Let P_1 and P_2 be C-properties. A space X is said to have the weak C-insertion property for (P_1, P_2) iff for any functions g and f on X such that $g < f$, g has property P_1 and f has property P_2, then there exists a continuous function h on X such that $g < h < f$. A space X is said to have the strong C-insertion property for (P_1, P_2) iff for any functions g and f on X such that $g < f$, g satisfies P_1 and f satisfies P_2, then there exists a continuous function h on X such that $g < h < f$ and such that if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$. If f is a real-valued function defined on a space X and if

$$\{x/f(x) < r\} \subset A(f, r) \subset \{x/f(x) < r\},$$

Received by the editors October 14, 1979 and, in revised form, January 31, 1980.

AMS (MOS) subject classifications (1970). Primary 54C30; Secondary 54C05.

Key words and phrases. Insertion of continuous functions, interposition of continuous functions.

© 1981 American Mathematical Society

0002-9939/81/0000-0027/001.50

119
for a real number r, then $A(f, r)$ is called a lower cut set.

We now prove the result stated above:

Proof. Assume that X satisfies the strong C-insertion for (P_1, P_2). Let g and f be functions on X satisfying P_1 and P_2 respectively such that $g < f$. Thus there exists h continuous over X such that $g < h < f$ and such that if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$. Now consider the functions 0 and $f - h$. 0 satisfies property P_1 and $f - h$ satisfies property P_2. Thus there exists function h_1 continuous over X such that $0 < h_1 < f - h$ and if $0 < (f - h)(x)$ for any x in X, then $0 < h_1(x) < (f - h)(x)$. We next show that

$$\{x/ (f - g)(x) > 0\} = \{x/ h_1(x) > 0\}.$$

If x is such that $(f - g)(x) > 0$, then $g(x) < f(x)$. Therefore $g(x) < h(x) < f(x)$. Thus $f(x) - h(x) > 0$ or $(f - h)(x) > 0$. Hence $h_1(x) > 0$. On the other hand, if $h_1(x) > 0$, then since $(f - h) > h_1$ and $f - g > f - h$, therefore $(f - g)(x) > 0$. For each n, let $A(f - g, 2^{-n}) = \{x/ (f - g)(x) < 2^{-n}\}$,

$F_n = \{x/ h_1(x) > 2^{-n+1}\},$

and

$$k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}.$$

Since $\{x/ (f - g)(x) > 0\} = \{x/ h_1(x) > 0\}$, it follows that

$$\{x/ (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n.$$

We next show that k_n is a continuous function from X into $[0, 2^{-n}]$ which completely separates F_n and $A(f - g, 2^{-n})$. From its definition, it is clear that k_n is continuous over X. Let $x \in F_n$. Then, from the definition of k_n, $k_n(x) = 2^{-n}$. If $x \in A(f - g, 2^{-n})$, then since $h_1 < f - h < f - g$, $h_1(x) < 2^{-n}$. Thus $k_n(x) = 0$, according to the definition of k_n. Hence k_n completely separates F_n and $A(f - g, 2^{-n})$. This completes our proof.

A paper by Blatter and Seever [2] deals with closed lattice cones (of functions) on a set X, i.e., closed convex cones of bounded real-valued functions on X which contain the constants and which are closed under the lattice operation. The necessary and sufficient conditions are presented for the “interposition” of K between members of the pair (L, M), K, L, M being closed lattice cones. The results are given in terms of certain binary relations, called inclusions, on the power set of X. However, a lattice cone of functions on a set X and sets with C-insertion properties are in general not the same.

References

Department of Mathematics, William Paterson College of New Jersey, Wayne, New Jersey 07470