Some properties of spaces of rank
Author:
C. A. McGibbon
Journal:
Proc. Amer. Math. Soc. 81 (1981), 121124
MSC:
Primary 55P45; Secondary 55Q15
MathSciNet review:
589152
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study spaces with 3 cells. After one suspension the attaching map for the top cell is shown to have order at most 2. For such spaces localized away from 2, we obtain a new proof of a classification theorem due to Zabrodsky. We also show that under suitable restrictions in the 3 cell case, the vanishing of all Whitehead products implies the existence of a multiplication.
 [1]
M.
G. Barratt, I.
M. James, and N.
Stein, Whitehead products and projective spaces, J. Math.
Mech. 9 (1960), 813–819. MR 0116331
(22 #7120)
 [2]
A.
L. Blakers and W.
S. Massey, Products in homotopy theory, Ann. of Math. (2)
58 (1953), 295–324. MR 0060820
(15,731f)
 [3]
I.
M. James, Reduced product spaces, Ann. of Math. (2)
62 (1955), 170–197. MR 0073181
(17,396b)
 [4]
I.
M. James, On spherebundles over spheres, Comment. Math. Helv.
35 (1961), 126–135. MR 0123332
(23 #A660)
 [5]
Gerald
J. Porter, Higherorder Whitehead products, Topology
3 (1965), 123–135. MR 0174054
(30 #4261)
 [6]
G.
J. Porter, Spaces with vanishing Whitehead products, Quart. J.
Math. Oxford Ser. (2) 16 (1965), 77–84. MR 0172292
(30 #2511)
 [7]
Dieter
Puppe, Some well known weak homotopy equivalences are genuine
homotopy equivalences, Symposia Mathematica, Vol. V (INDAM, Rome,
1969/70) Academic Press, London, 1971, pp. 363–374. MR 0303528
(46 #2665)
 [8]
Dennis
Sullivan, Geometric topology. Part I, Massachusetts Institute
of Technology, Cambridge, Mass., 1971. Localization, periodicity, and
Galois symmetry; Revised version. MR 0494074
(58 #13006a)
 [9]
Hirosi
Toda, Composition methods in homotopy groups of spheres,
Annals of Mathematics Studies, No. 49, Princeton University Press,
Princeton, N.J., 1962. MR 0143217
(26 #777)
 [10]
A.
Zabrodsky, On rank 2 𝑚𝑜𝑑 odd
𝐻spaces, New developments in topology (Proc. Sympos.
Algebraic Topology, Oxford, 1972), Cambridge Univ. Press, London, 1974,
pp. 119–128. London Math. Soc. Lecture Note Ser., No. 11. MR 0336742
(49 #1515)
 [1]
 M. G. Barratt, I. M. James and N. Stein, Whitehead products and projective spaces, J. Math. Mech. 9 (1960), 813819. MR 0116331 (22:7120)
 [2]
 A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math. (2) 58 (1953), 295324. MR 0060820 (15:731f)
 [3]
 I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170197. MR 0073181 (17:396b)
 [4]
 , On spherebundles over spheres, Comment Math. Helv. 35 (1961), 126135. MR 0123332 (23:A660)
 [5]
 G. J. Porter, Higher order Whitehead products, Topology 3 (1965), 123135. MR 0174054 (30:4261)
 [6]
 , Spaces with vanishing Whitehead products, Quart. J. Math. Oxford Ser. 16 (1965), 7785. MR 0172292 (30:2511)
 [7]
 D. Puppe, Some well known weak homotopy equivalences are genuine homotopy equivalences, Symposia Mathematica, Vol. V (INDAM, Rome, 1969/1970), Academic Press, London, 1971, pp. 363374. MR 0303528 (46:2665)
 [8]
 D. Sullivan, Geometric topology, Part I, M.I.T. Notes, 1970. MR 0494074 (58:13006a)
 [9]
 H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, No. 49, Princeton Univ. Press, Princeton, N.J., 1962. MR 0143217 (26:777)
 [10]
 A. Zabrodsky, On rank spaces, New Developments in Topology, London Math. Soc. Lecture Notes Series, no. 11, Cambridge Univ. Press, London, 1974, pp. 119128. MR 0336742 (49:1515)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
55P45,
55Q15
Retrieve articles in all journals
with MSC:
55P45,
55Q15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198105891529
PII:
S 00029939(1981)05891529
Keywords:
space,
localization,
Whitehead product
Article copyright:
© Copyright 1981
American Mathematical Society
