A REMARKABLE SIMPLE CLOSED CURVE: REVISITED

O. G. HARROLD

Abstract. It is shown that the pathology of R. H. Fox's remarkable simple closed curve is in a sense explained below more complicated than that of some examples of the well-known Fox-Artin paper.

A classical example of Fox-Artin shows that the union of two tamely embedded arcs whose intersection is a common end-point may be wildly embedded [3, Example 1.4]. Arcs formed in this way are called mildly wild. A classification theorem exists for such sets if the union is locally peripherally unknotted, LPU, also called Wilder arcs [4]. While the concepts of LPU and LU [7] have served to classify the local pathology of the examples of [3], a more delicate invariant seems necessary to relate the embedding of [5] to those in [3]. There is the possibility that an appropriately chosen arc from "The remarkable simple closed curve" might be "less wildly" embedded than the arcs in [3]. This note dispels such feasibility. To make this more precise a new embedding condition is introduced related to LPU. First, however, we review Fox's concept of almost unknotted.

A simple closed curve \(\Gamma \) in three-space \(\mathbb{R}^3 \) is called almost unknotted if there is a point \(p \) and a neighborhood \(U \) of \(p \) such that for any neighborhood \(V \) of \(p \) there is a homeomorphism \(\phi \) of \(\mathbb{R}^3 \) on \(\mathbb{R}^3 \) such that

(i) \(\phi \) is the identity on \(V \),
(ii) \(\phi|_{\Gamma \setminus U} \) is a subset of a plane.

It is clear that if \(q \) is another point and \(\Gamma \) has the same property at \(q \), then \(\Gamma \) is unknotted.

There is a local property suggested by the above. An arc \(X \) is called locally almost unknotted at \(p \) if for some neighborhood \(U \) of \(p \), no matter how small a neighborhood \(V \) of \(p \) is chosen, there is a neighborhood \(W \) of \(p \) and a homeomorphism \(\phi \) of \(\mathbb{R}^3 \) on \(\mathbb{R}^3 \) such that

(i) \(\phi = \) identity on \(W \) and
(ii) \(\phi|_{U \setminus V} \) is a subset of a plane. We abbreviate this property by LAU (locally almost unknotted).

Before introducing the next definition recall the definition of local peripheral unknottedness for a 1-manifold in \(\mathbb{R}^3 \) [7]. Let \(p \) be an interior point (boundary point) of \(X \) and \(\epsilon > 0 \). It is required that there be a topological 2-sphere \(K \) whose interior contains \(p \) such that
(i) $\text{diam} \ K < \epsilon$,
(ii) $\text{card} \ K \cap X = 2$ or 1 according as p is an interior or boundary point of X.

See [3, Examples 1.1 or 1.2] for the failure of this property.

A 1-manifold $X \subset \mathbb{R}^3$ is called weakly peripherally unknotted at p if for each $\epsilon > 0$ there is a homeomorphism h_ϵ of \mathbb{R}^3 on \mathbb{R}^3 such that

1. $h_\epsilon(p) = p$,
2. $\text{diam} \ h_\epsilon^{-1}(K) < \epsilon$,
3. $\text{card} \ A_\epsilon \cap X = 2$ or 1 according as p is an interior or boundary point of X.

We abbreviate this property by WPU. Note “The remarkable simple closed curve” has this property at each point.

If one may take h_ϵ = identity for all $\epsilon > 0$, this becomes LPU.

As a preliminary to the main result (Theorem 2) we have the following.

Theorem 1. Let X be an arc that is locally tame modulo p, p an end-point of X. Then X is LAU at p.

Proof. If the penetration index of X at p is 1, a sequence of space homeomorphisms can be defined carrying X onto an interval. Hence X is tame. In general, by the smoothing techniques of [1] or [9], $X \setminus p$ may be taken as locally polyhedral. If the other end-point of X is q, let X be ordered from q to p. Also, let $F(p, \epsilon)$ denote the surface of a sphere of radius ϵ, centered at p. Let Y_ϵ denote the subarc of X from q to t_ϵ, the last point on X in the assigned order. Then Y_ϵ is a finite polygonal arc and by elementary means (see Graueb [6]) can be straightened out to a segment Y'_ϵ leaving a neighborhood of p pointwise fixed. Denote this semilinear homeomorphism by f_ϵ. Let a neighborhood of p that is pointwise fixed by f_ϵ be Z_ϵ. We note X becomes $f_\epsilon(X)$ and the part of $f_\epsilon(X)$ exterior to $F(p, \epsilon)$ is a segment and hence lies in a plane. If $\epsilon' > \epsilon$, $F(p, \epsilon')$ meets $f_\epsilon(X)$ in at most one point. Then $K = f_\epsilon^{-1}[F(p, \epsilon')]$ is a topological 2-sphere that meets X in a single point if $\epsilon' - \epsilon$ is sufficiently small. Since the points of Z_ϵ have remained pointwise fixed, X is LAU at p.

Remark 1. The segment Y'_ϵ referred to above may be taken to lie on a line through p.

Remark 2. Among the arcs locally tame modulo an end-point, the LAU condition is no further restriction of the embedding.

Remark 3. Let X be a union of two arcs X' and X'' meeting at p. Assume $X' \setminus p$ and $X'' \setminus p$ are locally tame. If X has penetration index = 2 at p, then X' and X'' are each tame and X is at most mildly wild [8]. Applying the above calculations to X' and X'', we see that the hypothesis that X be LAU at p implies that the homeomorphisms used in straightening X' and X'' be consistent, i.e. there is a single homeomorphism that straightens each of X', X'' except for a neighborhood of p. This will be taken as our definition of LAU at an interior point of an arc below.

Theorem 2. Among the mildly wild arcs, LAU and WPU are equivalent properties.

Proof. Let $X = X' \cup X''$ be mildly wild, where $X' \cap X'' = \{p\}$, X', X'' are
tame and X is LAU at p. Given $\varepsilon > 0$, define $U = S(p, \varepsilon) \cap X$. Let V be the component of $S(p, \varepsilon/3) \cap X$ determined by p. By the LAU property, there is a neighborhood W of p and a homeomorphism ξ of R^3 on R^3 such that

(i) $\xi|W = \text{identity},$

(ii) $\xi(U \setminus V)$ is a subset of plane π. Diminishing W if necessary we assume $W = S(p, \delta)$ and for all x in W the arc xp has a diameter $< \varepsilon/3$. If q_{-1} and q_{+1} are the end-points of X, let X be reparametrized so that q_{-1} corresponds to $t = -1$, p to $t = 0$ and $t = +1$ to q_1. Let A denote the first component of $(q_{-1}p) \cap \pi$ with one boundary component on $F(p, \varepsilon')$, $\varepsilon' > \varepsilon$, and one on $F(p, \varepsilon)$. Let B denote the last component of $(pq_1) \cap \pi$ with one boundary component on $F(p, \varepsilon)$ and one on $F(p, \varepsilon')$. All other components of $\pi \cap (X \setminus W)$ can be pushed into $S(p, \varepsilon) \setminus W$ without moving the points of W by a homeomorphism ξ_2. The set $\{S(p, \varepsilon') \setminus S(p, \varepsilon)\} \cap \pi$ is an annulus with two components of

$\{\{S(p, \varepsilon') \setminus S(p, \varepsilon)\}\} \cap X,$

call them A and B, stretching from $F(p, \varepsilon')$ to $F(p, \varepsilon)$. Let H be a simple closed curve in this annulus piercing both of A and B just once. Then define $K = H \times [-\varepsilon, +\varepsilon] \cup (\text{Int } H \times \varepsilon) \cup \{(\text{Int } H) \times -\varepsilon\}$. Clearly K is a topological 2-sphere containing p in its interior and $K \cap X = a$ of pairs of points, one on A, one on B and $\text{diam } K < 2\varepsilon' + 2\varepsilon < 4\varepsilon$ (using a rectangular metric).

By construction, $\text{diam } K < 3\varepsilon$ if $\varepsilon' - \varepsilon$ is sufficiently small. Taking $h = (\xi_2\xi)^{-1}$ we have

(0) $h(p) = p,$

(i) $\text{diam } K < 3\varepsilon,$

(ii) $\text{card } K \cap h^{-1}(X) = 2$, i.e., X is WPU at p.

In the converse direction, suppose $X = A \cup B$, where A and B are tame and $A \cap B = \{p\}$ is a common end-point. Assuming X is WPU at p we want to prove X is LAU at p. Given $\varepsilon > 0$, there is a topological 2-sphere K containing p in its interior and a homeomorphism h of R^3 on R^3 such that

(0) $h(p) = p,$

(i) $\text{diam } h^{-1}(K) < \varepsilon,$

(ii) $K \cap X = a \cup b$, $a \in A$ and $b \in B$.

Let A_t denote the component of $A' \setminus a$ not containing p and B_t the component of $B' \setminus b$ not containing p. Then A_t and B_t are tame disjoint arcs defined by the WPU property. By the smoothing techniques of [1] or [9] we may choose A_1 and B_1 as polygonal arcs. Again, by elementary techniques $A_1 \cup B_1$ may be flattened out into a plane leaving a neighborhood S of p pointwise fixed by a homeomorphism g.

If U is any neighborhood of p large enough to contain $X \setminus g(A_1 \cup B_1)$, then given any $V(p) \subset U$ there is a $W(p) \subset V \subset S$ so that

(i) $g|W = \text{identity},$

(ii) $g|U \setminus V$ is a subset of a plane.

This serves in the definition of LAU for X at p.

Theorem 3. Let Γ again denote “The remarkable simple closed curve.” Then Γ fails to be either locally unknotted (LU) or locally peripherally unknotted (LPU) at p. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Suppose \(\Gamma \) is LU at \(p \). Then there is a disk \(D \) containing a neighborhood of \(p \) in \(\Gamma \). Since \(\Gamma \) is locally tame mod \(p \), there is no loss in choosing \(D \) locally polyhedral mod \(p \). Let \(Y = A \cup B \) be a neighborhood of \(p \) in \(\Gamma \) where \(A \) is a straight line interval with \(p \) as an end-point and \(B \) the closure of the complement in \(Y \). Then \(A \) and \(B \) are equivalently embedded in \(\mathbb{R}^3 \) by Theorem 5 of [2]. Hence \(A \) and \(B \) are both tame. The existence of \(D \) means \(A \cup B \) has the A1P at \(p \). Thus \(A \cup B \) is tame by [8], a contradiction. Hence \(\Gamma \) is locally knotted at \(p \) (i.e. no such \(D \) exists).

If \(\Gamma \) were LPU at \(p \), \(\Gamma \) would be expressible as a union of two nonoverlapping arcs \(qap, qbp \) denoted by \(A, B \), respectively. At least one of \(A, B \) is tame, say \(A \). There is a disk \(D \) whose boundary contains \(A \) and \(D \) may be chosen tame. By choosing \(D \) carefully we can arrange that \(D \cap B = \{ p \} \). Since \(\Gamma \) is LPU at \(p \), \(B \) is LPU at \(p \). Hence \(B \) is tame. It follows that \(A \cup B \) is part of a tame arc and hence tame, a contradiction.

Thus, the embedding of \(\Gamma \) at \(p \) is more complicated than that of either 1.2 or 1.4 of [3]. \(\Gamma \) is not a union of two tame nonoverlapping arcs but is a countable union of such tame nonoverlapping arcs.

References

1. R. H. Bing, Locally tame sets are tame, Ann. of Math. 59 (1954), 145–158.

Department of Mathematics, Florida State University, Tallahassee, Florida 32306