Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers of group algebras of vector-valued functions


Authors: U. B. Tewari, M. Dutta and D. P. Vaidya
Journal: Proc. Amer. Math. Soc. 81 (1981), 223-229
MSC: Primary 43A22; Secondary 43A20
DOI: https://doi.org/10.1090/S0002-9939-1981-0593462-9
MathSciNet review: 593462
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a locally compact abelian group and $ X$ be a Banach space. Let $ {L^1}(G,X)$ be the Banach space of $ X$-valued Bochner integrable functions on $ G$. We prove that the space of bounded linear translation invariant operators of $ {L^1}(G,X)$ can be identified with $ L(X,M(G,X))$, the space of bounded linear operators from $ X$ into $ M(G,X)$ where $ M(G,X)$ is the space of $ X$-valued regular, Borel measures of bounded variation on $ G$. Furthermore, if $ A$ is a commutative semisimple Banach algebra with identity of norm 1 then $ {L^1}(G,A)$ is a Banach algebra and we prove that the space of multipliers of $ {L^1}(G,A)$ is isometrically isomorphic to $ M(G,A)$. It also follows that if dimension of $ A$ is greater than one then there exist translationinvariant operators of $ {L^1}(G,A)$ which are not multipliers of $ {L^1}(G,A)$.


References [Enhancements On Off] (What's this?)

  • [1] N. Dinculeanu, Vector measures, Pergamon, Oxford, 1967. MR 0206190 (34:6011b)
  • [2] A. Hausner, Group algebras of vector valued functions Bull. Amer. Math. Soc. 62 (1956), 383.
  • [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. II; Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970. MR 0262773 (41:7378)
  • [4] J. E. Huneycutt, Jr., Products and convolutions of vector valued set functions, Studia Math. 41 (1972), 101-129. MR 0302855 (46:1998)
  • [5] G. P. Johnson, Spaces of functions with values in a Banach algebra. Trans. Amer. Math. Soc. 92 (1959), 411-429. MR 0107185 (21:5910)
  • [6] R. Larsen, An introduction to the theory of multipliers, Springer-Verlag, Berlin and New York, 1971. MR 0435738 (55:8695)
  • [7] O. Akinyele, A multiplier problem, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 57 (1974), no. 6, 487-490 (1975). MR 0435734 (55:8691)
  • [8] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, Oxford, 1968. MR 0306811 (46:5933)
  • [9] M. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 0223496 (36:6544)
  • [10] -, Multipliers and tensor products of $ {L^p}$-spaces of locally compact groups, Studia Math. 33 (1969), 71-82. MR 0244764 (39:6078)
  • [11] I. Singer, Linear functional on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Math. Pures. Appl. 2 (1957), 301-315. MR 0096964 (20:3445)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22, 43A20

Retrieve articles in all journals with MSC: 43A22, 43A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0593462-9
Keywords: Locally compact abelian group, invariant operators, multiplier
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society