A NONLINEAR ERGODIC THEOREM
FOR AN AMENABLE SEMIGROUP
OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

WATARU TAKAHASHI

Abstract. We prove a nonlinear ergodic theorem for noncommutative semigroups
of nonexpansive mappings in a Hilbert space. Furthermore, we give a necessary
and sufficient condition for a noncommutative semigroup to have a fixed point.

1. Introduction. Let H be a real Hilbert space with norm $\| \cdot \|$ and inner product
$\langle \cdot, \cdot \rangle$ and C a nonempty closed convex subset of H. A mapping $T: C \to C$ is
called nonexpansive on C, or $T \in \text{Cont}(C)$ if

$$\|Tx - Ty\| \leq \|x - y\| \quad \text{for every } x, y \in C.$$

Let $F(T)$ be the set of fixed points of T, that is, $F(T) = \{z \in C: Tz = z\}$. Then,
the set $F(T)$ is obviously closed and convex. Let $S = \{S(t): t \geq 0\}$ be a family of
nonexpansive mappings of C into itself such that $S(0) = I$, $S(t + s) = S(t)S(s)$ for
all $t, s \in [0, \infty)$ and $S(t)x$ is continuous in $t \in [0, \infty)$ for each $x \in C$. Then, S
is called a nonexpansive semigroup on C. The fixed point set $F(S)$ of S is defined by

$$F(S) = \{x \in C: S(t)x = x \quad \text{for all } t \in [0, \infty)\}.$$

The first nonlinear ergodic theorem for nonexpansive mappings was established
by Baillon [1]: Let $C \subset H$, $T \in \text{Cont}(C)$ and $F(T) \neq \emptyset$. Then the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T_kx$$

converge weakly as $n \to +\infty$ to a fixed point of T for each $x \in C$. A corresponding
result for nonexpansive semigroups on C was given by Baillon [2] and
Baillon-Brézis [3]. Nonlinear ergodic theorems for general commutative semigroups
of nonexpansive mappings were given by Brézis-Browder [4] and Hirano-Takahashi
[6].

In this paper, we prove a nonlinear ergodic theorem for an amenable semigroup
of nonexpansive mappings of C into itself. Furthermore we obtain a necessary and
sufficient condition for a left amenable semigroup of nonexpansive mappings to
have a common fixed point. This is a generalization of Pazy's results [7] and [9].

2. Nonlinear ergodic theorem. Let S be an abstract semigroup and $m(S)$ the
Banach space of all bounded real valued functions on S with the supremum norm.
For each $s \in S$ and $f \in m(S)$, we define elements f_s and f^s in $m(S)$ given by
Let $f(t) = f(st)$ and $f'(t) = f(ts)$ for all $t \in S$. An element $\mu \in m(S)^*$ (the dual space of $m(S)$) is called a mean on S if $\|\mu\| = \mu(1) = 1$. A mean μ is called left (right) invariant if $\mu(f) = \mu(f)$ ($\mu(f') = \mu(f)$) for all $f \in m(S)$ and $s \in S$. An invariant mean is a left and right invariant mean. A semigroup which has a left (right) invariant mean is called left (right) amenable. A semigroup which has an invariant mean is called amenable. Day [5] proved that a commutative semigroup is amenable. We also know that $\mu \in m(S)^*$ is a mean on S if and only if
\[
\inf\{f(s); s \in S\} < \mu(f) < \sup\{f(s); s \in S\}
\]
for every $f \in m(S)$.

Now we prove a nonlinear ergodic theorem for noncommutative semigroups of nonexpansive mappings in a Hilbert space. The proof employs the methods of [8], [11] and [12].

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space H and S be an amenable semigroup of nonexpansive mappings t of C into itself. Suppose
\[
F(S) = \bigcap \{F(t); t \in S\} = \emptyset.
\]
Then, there exists a nonexpansive retraction P of C onto $F(S)$ such that $Pt = tP = P$ for every $t \in S$ and $Px \in \text{co}\{tx; t \in S\}$ for every $x \in C$, where $\text{co} A$ is the closure of the convex hull of A.

Proof. Let μ be an invariant mean on S and $x \in C$. Then, since $F(S) \neq \emptyset$, $\{tx; t \in S\}$ is bounded and hence, for each y in H, the real-valued function $t \to \langle tx, y \rangle$ is in $m(S)$. Denote by $\mu_t(x, y)$ the value of μ at this function. By linearity of μ and of the inner product, this is linear in y; moreover, since
\[
|\mu_t(x, y)| \leq \|\mu\| \cdot \sup_{t} |\langle tx, y \rangle| \leq \left(\sup_{t} \|tx\| \right) \cdot \|y\|,
\]
it is continuous in y, so by the Riesz theorem, there exists an $x_0 \in H$ such that $\mu_t(x, y) = \langle x_0, y \rangle$ for every $y \in H$. Setting $Px = x_0$, we have $Px \in \text{co}\{tx; t \in S\}$.

In fact, if $Px \notin \text{co}\{tx; t \in S\}$, then by the separation theorem there exists a $y_0 \in H$ such that
\[
\langle Px, y_0 \rangle < \inf_{t} \langle tx, y_0 \rangle < \inf_{t} \langle z, y_0 \rangle; z \in \text{co}\{tx; t \in S\} \}.
\]
So, we have
\[
\inf_{t} \langle tx, y_0 \rangle < \mu_t(x, y_0) = \langle Px, y_0 \rangle < \inf_{t} \langle z, y_0 \rangle; z \in \text{co}\{tx; t \in S\} \} \}
\]
This is a contradiction. Let $s \in S$. Then we have
\[
0 \leq \|tx - x_0\|^2 - \|sx_0 - x_0\|^2 \\
\leq \|tx - sx_0\|^2 + 2\langle tx - sx_0, sx_0 - x_0 \rangle \\
\leq \|sx_0 - x_0\|^2 - \|tx - sx_0\|^2
\]
and hence

\begin{align*}
0 & < \mu \left(\|tx - sx_0\|^2 + 2\langle tx - sx_0, sx_0 - x_0 \rangle + \|sx_0 - x_0\|^2 - \|sx_0 - x_0\|^2 \right) \\
& = \mu \|tx - sx_0\|^2 + 2\langle x_0 - sx_0, sx_0 - x_0 \rangle \\
& + \|sx_0 - x_0\|^2 - \mu \|tx - sx_0\|^2 \\
& = 2\langle x_0 - sx_0, sx_0 - x_0 \rangle + \|sx_0 - x_0\|^2 \\
& = -\|x_0 - sx_0\|^2.
\end{align*}

This implies \(sx_0 = x_0\) for every \(s \in S\) and hence we have \(sPx = Px\) for every \(s \in S\). From

\[\langle Psx, y \rangle = \mu \langle tsx, y \rangle = \mu \langle tx, y \rangle = \langle Px, y \rangle\]

and

\[\langle P^2x, y \rangle = \mu \langle tPx, y \rangle = \mu \langle Px, y \rangle = \langle Px, y \rangle,\]

it follows that \(Ps = P\) for every \(s \in S\) and \(P^2 = P\). At last, we prove that \(P\) is nonexpansive. In fact, we have

\[\|Px - Py\|^2 = \langle Px - Py, Px - Py \rangle = \mu \langle tx - ty, Px - Py \rangle \leq \left(\sup_{t} \|tx - ty\| \right) \cdot \|Px - Py\| \leq \|x - y\| \cdot \|Px - Py\|\]

for every \(x, y \in C\).

As a direct consequence, we have

Corollary 1. Let \(C\) be a nonempty closed convex subset of a real Hilbert space \(H\) and \(S\) be a commutative semigroup of nonexpansive mappings \(t\) of \(C\) into itself. Suppose that \(F(S) \neq \emptyset\). Then there exists a nonexpansive retraction \(P\) of \(C\) onto \(F(S)\) such that \(Pt = tP = P\) for every \(t \in S\) and \(Px \in \text{co}\{tx: t \in S\}\) for every \(x \in C\).

By the method of Theorem 1, we can prove the following

Theorem 2. Let \(C\) be a nonempty closed convex subset of a real Hilbert space \(H\) and \(S\) be a left amenable semigroup of nonexpansive mappings \(t\) of \(C\) into itself. Then, \(F(S) \neq \emptyset\) if and only if there exists an \(x_0 \in C\) such that \(\{tx_0: t \in S\}\) is bounded.

As direct consequences, we obtain Pazy's results [7] and [9].

Corollary 2. Let \(C\) be a nonempty closed convex subset of a real Hilbert space \(H\) and \(T\) be a nonexpansive mapping of \(C\) into itself. Then, \(F(T) \neq \emptyset\) if and only if there exists an element \(x_0 \in C\) such that the sequence \(\{T^nx_0: n = 1, 2, \ldots\}\) is bounded.

Corollary 3. Let \(C\) be a nonempty closed convex subset of a real Hilbert space \(H\) and \(S = \{S(t): t \geq 0\}\) be a nonexpansive semigroup on \(C\). Then, \(F(S) \neq \emptyset\) if and only if there exists an element \(x_0 \in C\) such that \(\{S(t)x_0: t \geq 0\}\) is bounded.
References

Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo, Japan