ON THE PRODUCT OF A RIESZ SET AND A SMALL p SET

HIROSHI YAMAGUCHI

Abstract. Let Z^+ be the semigroup consisting of all nonnegative integers. By a famous theorem of Bochner, $Z^+ \times Z^+$ is a Riesz set in $Z \otimes Z$. In this paper, we prove that the product set of a Riesz set and a small p set is a small p set.

1. Introduction. Let T be the circle group and Z^+ the semigroup consisting of nonnegative integers. Then, by the famous F. and M. Riesz theorem, each measure on T whose Fourier-Stieltjes transform vanishes off Z^+ is absolutely continuous with respect to the Lebesgue measure on T. Moreover, by a well-known theorem of Bochner, each measure on T^2 whose Fourier-Stieltjes transform vanishes off $Z^+ \times Z^+$ is absolutely continuous with respect to the Lebesgue measure on T^2.

In this paper, we prove that the product set of a Riesz set and a small p set is a small p set. We use Glicksberg's ideas [1] and the theory of disintegration.

For a LCA group G, $C_c(G)$, $C_0(G)$, $L^1(G)$ and $M(G)$ denote the usual spaces. For a subset E of \hat{G}, $M_E(G)$ denotes the space consisting of all measures in $M(G)$ whose Fourier-Stieltjes transforms vanish off E. We denote the Haar measure on G by m_G.

Definition. Let G be a LCA group. For a positive integer p, a closed subset E of G is called a small p set if the following is satisfied:

For each $\mu \in M_E(G)$, $\mu^p (= \mu \ast \mu \ast \cdots \ast \mu$ (p times)) belongs to $L^1(G)$. In particular, a small 1 set is called a Riesz set.

Lemma 1 [4]. Let p be a positive integer. Then we have

$$t_1 t_2 \cdots t_p = \sum_{i=1}^p A_i \Phi_i(t_1, t_2, \ldots, t_p)^p$$

for each $(t_1, t_2, \ldots, t_p) \in C^p$,

where $A_i \in C$ (complex numbers) and Φ_i are linear forms of t_1, t_2, \ldots, t_p.

2. Main theorem.

Theorem 1. Let G_1 and G_2 be metrizable σ-compact LCA groups. Let E_1 be a small p set in \hat{G}_1 and E_2 a Riesz set in \hat{G}_2. Then $E_1 \times E_2$ is a small p set in $\hat{G}_1 \oplus \hat{G}_2$.

Proof. Let μ be a measure in $M_{E_1 \times E_2}(G_1 \oplus G_2)$. Let π be the projection from $G_1 \oplus G_2$ onto G_2. Put $\eta = \pi(\mu)$ (continuous image under π). Then, by disintegration theory, there exists a family $\{\lambda_h\}_{h \in G_1}$ in $M(G_1 \oplus G_2)$ with the following properties:

Received by the editors November 27, 1979.

© 1981 American Mathematical Society

0002-9939/81/0000-0075/$02.50

273
(1) \(h \mapsto \lambda_h(f) \) is a Borel measurable function of \(h \) for each bounded Borel measurable function \(f \) on \(G_1 \oplus G_2 \),
(2) \(\text{supp}(\lambda_h) \subset \sigma^{-1}(\{h\}) = G_1 \times \{h\} \),
(3) \(\|\lambda_h\| < 1 \),
(4) \(\mu(g) = \int_{G_2} \lambda_h(g) \, d\eta(h) \) for each bounded Borel measurable function \(g \) on \(G_1 \oplus G_2 \).

By (2), we have \(d\lambda_h(x,y) = d\nu_h(x) \times d\delta_h(y) \), where \(\nu_h \in M(G_1) \) and \(\delta_h \) is the Dirac measure at \(h \). By the method used in [1, pp. 425–426], we have \(\nu_h \in M_{E_1}(G_1) \) a.e. \(h(\eta) \).

That is, there exists a Borel measurable set \(K \) in \(G_2 \) with \(\eta(G_2 \setminus K) = 0 \) such that \(\nu_h \in M_{E_1}(G_1) \) for \(h \in K \).

Claim 1. \(\eta \) belongs to \(L^1(G_2) \).
For \(\gamma_0 = (\gamma_1, \gamma_2) \in G_1 \oplus G_2 \), we have \(\sigma(\gamma_0, \mu) = \tilde{\mu}(-\gamma_1, \gamma - \gamma_2) \). Hence \(\sigma(\gamma_0, \mu) \) belongs to \(M_{E_1 + E_2}(G_2) \). Since \(E_2 \) is a Riesz set, \(E_2 + E_2 \) is also a Riesz set. Hence \(\sigma(\gamma_0, \mu) \) belongs to \(L^1(G_2) \). On the other hand, there exists a sequence \(\{ \rho_n \} \) in \(\text{Trig}(G_1 \oplus G_2) \) such that \(\lim_{n \to \infty} ||\rho_n - \mu|| = 0 \). Hence we have

\[
\lim_{n \to \infty} \| \sigma(\rho_n, \mu) - \sigma(\mu) \| = 0.
\]

Thus Claim 1 is proved.

Claim 2. \((h_1, \ldots, h_p) \mapsto \lambda_{h_1} \ast \cdots \ast \lambda_{h_p}(g) = (\nu_{h_1} \ast \cdots \ast \nu_{h_p}) \times \delta_{\lambda_{h_1} \ast \cdots \ast \lambda_{h_p}}(g) \) is a Borel measurable function on \(G_2^p \) for each bounded Borel function \(g \) on \(G_1 \oplus G_2 \).

Let \(f \in C_c(G_1 \oplus G_2) \) and put \(f(x_1, \ldots, x_p) = f_1(x_1) \cdots f_p(x_p) \) for \((x_1, \ldots, x_p) \in (G_1 \oplus G_2)^p \). Then \((\lambda_{h_1} \ast \cdots \ast \lambda_{h_p})(f) = \lambda_{h_1}(f_1) \cdots \lambda_{h_p}(f_p) \) so that by (1)

\[
(5) (h_1, \ldots, h_p) \mapsto (\lambda_{h_1} \ast \cdots \ast \lambda_{h_p})(f) \text{ is Borel measurable.}
\]

Since \(\{ \Sigma f_1(x_1) \cdots f_p(x_p) : f_i \in C_c(G_1 \oplus G_2) \} \) is dense in \(C_0((G_1 \oplus G_2)^p) \), (5) is Borel measurable for \(f \in C_0((G_1 \oplus G_2)^p) \), hence, also for bounded Borel functions \(f \) on \((G_1 \oplus G_2)^p \). Let \(\sigma_p(x_1, \ldots, x_p) = x_1 + \cdots + x_p \) for \((x_1, \ldots, x_p) \in (G_1 \oplus G_2)^p \). Then for bounded Borel \(g \) on \(G_1 \oplus G_2 \) we have \(\lambda_{h_1} \ast \cdots \ast \lambda_{h_p}(g) = (\lambda_{h_1} \ast \cdots \ast \lambda_{h_p})(g \circ \sigma_p) \) and the claim follows.

Hence, by Claim 2, we can define a measure \(\xi \) in \(M(G_1 \oplus G_2) \) as follows

\[
\xi(f) = \int_{G_2} \int_{G_2} \cdots \int_{G_2} \left\{ (\nu_{h_1} \ast \nu_{h_2} \ast \cdots \ast \nu_{h_p}) \times \delta_{(\lambda_{h_1} \ast \cdots \ast \lambda_{h_p})}(f) \right\} \, \eta(h_1) \, \eta(h_2) \cdots \eta(h_p)
\]

for \(f \in C_0(G_1 \oplus G_2) \).

Claim 3. \(\xi = \mu^p \).

Let \((\gamma_1, \gamma_2) \) be in \(G_1 \oplus G_2 \). Then we have

\[
\tilde{\xi}(\gamma_1, \gamma_2) = \prod_{i=1}^p \int_{G_2} \tilde{\nu}_h(\gamma_1)(-h_i, \gamma_2) \, d\eta(h_i)
\]

\[
= \{ \tilde{\mu}(\gamma_1, \gamma_2) \}^p = (\mu^p)(\gamma_1, \gamma_2).
\]

Thus we have \(\xi = \mu^p \).

Let \(E \) be a Borel measurable set in \(G_1 \oplus G_2 \) with \(m_{G_1 \oplus G_2}(E) = 0 \), where \(m_{G_1 \oplus G_2} \)
denotes the Haar measure on \(G_1 \oplus G_2 \). Then there exists a Borel measurable set \(F_2 \) in \(G_2 \) such that (i) \(m_{G_2}(F_2) = 0 \) and (ii) \(m_{G_1}(E_y) = 0 \) if \(y \notin F_2 \), where \(E_y = \{ x \in G_1; (x, y) \in E \} \). Let \(\alpha_p \) be the homomorphism from \(G_2^p \) onto \(G_2 \) such that \(\alpha_p(h_1, h_2, \ldots, h_p) = h_1 + h_2 + \cdots + h_p \). We note that \(\nu_{h_1} \ast \nu_{h_2} \ast \cdots \ast \nu_{h_p} \) belongs to \(L^1(G_1) \) for \((h_1, h_2, \ldots, h_p) \in K^p \) by Lemma 1 and

\[
\eta^p(F_2) = (\eta \times \eta \times \cdots \times \eta)(\alpha_p^{-1}(F_2)).
\]

Hence, by Claim 1 and Claim 3, we have

\[
\begin{align*}
\mu^p(E) &= \int_{G_1} \cdots \int_{G_2} \left\{ (\nu_{h_1} \ast \nu_{h_2} \ast \cdots \ast \nu_{h_p}) \times \delta_{(h_1 + h_2 + \cdots + h_p)} \right\} \\
&= \int_{K^p} \left\{ \int_{G_2} \cdots \int_{G_2} (\eta \times \eta \times \cdots \times \eta)(h_1, h_2, \ldots, h_p) \right\} \\
&= \int_{K^p} \left\{ \int_{G_2} \cdots \int_{G_2} (\eta \times \eta \times \cdots \times \eta)(h_1, h_2, \ldots, h_p) \right\} \\
&\quad + \int_{K^p} \left\{ \int_{G_2} \cdots \int_{G_2} (\eta \times \eta \times \cdots \times \eta)(h_1, h_2, \ldots, h_p) \right\} = 0.
\end{align*}
\]

Hence we have \(\mu^p \in L^1(G_1 \oplus G_2) \). Thus \(E_1 \times E_2 \) is a small \(p \) set in \(G_1 \oplus G_2 \).

Q.E.D.

Dr. S. Saeki kindly pointed out the following Lemma 2 to the author.

Lemma 2. Suppose the product set \(F_1 \times E_2 \) of a small \(p \) set \(F_1 \) in \(\hat{G}_1 \) and a Riesz set \(E_2 \) in \(\hat{G}_2 \) is a small \(p \) set in \(\hat{G}_1 \oplus \hat{G}_2 \) for all metrizable LCA groups \(G_1 \) and \(G_2 \). Then the product set \(E_3 \times E_4 \) of a small \(p \) set \(E_3 \) in \(\hat{G}_3 \) and a Riesz set \(E_4 \) in \(\hat{G}_4 \) is a small \(p \) set in \(G_3 \oplus G_4 \) for all LCA groups \(G_3 \) and \(G_4 \).

Proof. Suppose there exists a measure \(\mu \) in \(M_{E_1 \times E_2}(G_3 \oplus G_4) \) such that \(\mu^p \) does not belong to \(L^1(G_3 \oplus G_4) \). Then, by Corollary 3 of [2], there exists a measure \(\sigma \) in \(M_\sigma(G_3 \oplus G_4) \) such that

\[
(\mu \ast \sigma)^p = \mu^p \ast \sigma^p \notin L^1(G_3 \oplus G_4).
\]

Since \(\sigma \in M_\sigma(G_3 \oplus G_4) \), there exist open \(\sigma \)-compact subgroups \(\Gamma_i \) of \(\hat{G}_i \) such that \(\text{supp}(\delta) \subseteq \Gamma_3 \times \Gamma_4 \) (\(i = 3, 4 \)). On the other hand, \(\hat{G}_3 \) and \(\hat{G}_4 \) are metrizable LCA groups. Evidently \(E_3 \cap \Gamma_3 \) is a small \(p \) set in \(\Gamma_3 \) and \(E_4 \cap \Gamma_4 \) is a Riesz set in \(\Gamma_4 \). Hence, by the hypothesis of this Lemma, \((E_3 \cap \Gamma_3) \times (E_4 \cap \Gamma_4) \) is a small \(p \) set in \(\Gamma_3 \oplus \Gamma_4 \). Therefore, since \(\sigma \ast \mu \in M_{(E_3 \cap \Gamma_3) \times (E_4 \cap \Gamma_4)}(G_3 \oplus G_4) \), we have \((\sigma \ast \mu)^p \in L^1(G_3 \oplus G_4) \).

This contradicts (A). Q.E.D.

Lemma 3. Let \(G_3 \) and \(G_4 \) be metrizable LCA groups. Let \(E_3 \) be a small \(p \) set in \(\hat{G}_3 \) and \(E_4 \) a Riesz set in \(\hat{G}_4 \). Then \(E_3 \times E_4 \) is a small \(p \) set in \(G_3 \oplus G_4 \).

Proof. Let \(\mu \) be a measure in \(M_{E_3 \times E_4}(G_3 \oplus G_4) \). Then there exist open metrizable \(\sigma \)-compact subgroups \(G_1 \subseteq G_3 \) and \(G_2 \subseteq G_4 \) such that \(\text{supp}(\mu) \) is contained in \(G_1 \oplus G_2 \). Let \(\pi_{G_2} \) be the projection from \(G_1 \oplus G_2 \) onto \(G_2 \). Put \(\eta' = \pi_{G_2}(|\mu|) \). Then,
by disintegration theory, there exists a family \(\{ \lambda_h \}_{h \in G_2} \) in \(M(G_1 \oplus G_2) \) such that

1. \(h \mapsto \lambda_h(f) \) is a Borel measurable function of \(h \) for each bounded Borel measurable function \(f \) on \(G_1 \oplus G_2 \),
2. \(\text{supp}(\lambda_h) \subset G_1 \times \{ h \} \),
3. \(||\lambda_h|| < 1 \) and
4. \(\mu(g) = \int_{G_2} \lambda_h(g) \, d\eta(h) \) for each bounded Borel measurable function \(g \) on \(G_1 \oplus G_2 \).

Since \(G_1 \oplus G_2 \) is \(\sigma \)-compact and metrizable, there exists a countable dense set \(\mathfrak{C} = \{ f_m \} \) in \(C_0(G_1 \oplus G_2) \). For each \(g \in C_0(G_1 \oplus G_2) \), we define a function \(\hat{g} \) in \(C_0(G_3 \oplus G_4) \) by \(\hat{g}(x) = g(x) \) for \(x \in G_1 \oplus G_2 \) and \(\hat{g}(x) = 0 \) for \(x \notin G_1 \oplus G_2 \). We define measures \(\eta \in M(G_4) \) and \(\lambda_h \in M(G_3 \oplus G_4) \) \((h \in G_2)\) as follows

\[
\eta(F) = \eta'((G_2 \cap F) \text{ for a Borel measurable set } F \text{ in } G_4,
\lambda_h(F') = \begin{cases}
\lambda_h(F' \cap G_1 \oplus G_2) & \text{if } h \in G_2, \\
0 & \text{if } h \in G_4 \setminus G_2,
\end{cases}
\]

for a Borel measurable set \(F' \) in \(G_3 \oplus G_4 \). Then we have the following

6. \(h \mapsto \lambda_h(f) \) is a Borel measurable function of \(h \) for each bounded Borel measurable function \(f \) on \(G_3 \oplus G_4 \),
7. \(\text{supp}(\lambda_h) \subset G_3 \times \{ h \} \subset G_3 \times \{ h \} \),
8. \(||\lambda_h|| < 1 \),
9. \(\mu(g) = \int_{G_4} \lambda_h(g) \, d\eta(h) \) for each bounded Borel measurable function \(g \) on \(G_3 \oplus G_4 \).

From (7), we have \(d\lambda_h(x, y) = d\rho_h(x) \times d\delta_h(y) \), where \(\rho_h \) is a measure in \(M(G_3) \) with \(\text{supp}(\rho_h) \subset G_1 \). Noting that \(\text{supp}(\eta) \subset G_2 \), we may apply Lusin’s theorem and regularity of \(\eta \) to obtain for each positive integer \(n \) a compact subset \(K_n \) of \(\text{supp}(\eta) \) such that

(i) \(\eta(G_2 \setminus K_n) < 1/n \),
(ii) \(h \mapsto \lambda_h(f_m) \) is a continuous function on \(K_n \) for each \(f_m \in \mathfrak{C} = \{ f; f \in \mathfrak{C} \} \),
and
(iii) for each \(x \in K_n \) and neighborhood \(V \) of \(x \), \(\eta(V \cap K_n) > 0 \).
Since \(\mathfrak{C} \) is dense in \(C_0(G_1 \oplus G_2) = \{ f; f \in C_0(G_1 \oplus G_2) \} \) we may replace (ii) by

(ii)' \(h \mapsto \lambda_h(f) \) is continuous on \(K_n \) for each \(f \in C_0(G_1 \oplus G_2) \).

Claim 1. \(\rho_h \in M_c(G_3) \) for \(h \in K_n \).

Let \(f \in L^1(\hat{G}_3) \) with \(\text{supp}(f) \subset E_3^* \). Then since \(\hat{\mu}(\gamma_1, \gamma_2) = 0 \) for \(\gamma_1 \notin E_3 \) we have

\[
0 = \int_{\hat{G}_3} \hat{\mu}(\gamma_1, \gamma_2)f(\gamma_1) \, d\gamma_1
= \int_{\hat{G}_3} \int_{G_4} \int_{G_3} (-x, \gamma_1)|d\rho_h(x)|(-h, \gamma_2) \, d\eta(h)f(\gamma_1) \, d\gamma_1
= \int_{G_4} \int_{G_3} \hat{f}(x)|d\rho_h(x)|(-h, \gamma_2) \, d\eta(h)
= \int_{G_4} \rho_h(\hat{f})(-h, \gamma_2) \, d\eta(h).
\]
Hence, for each $F \in L^1(\mathbb{G}_4)$ and $f \in L^1(\mathbb{G}_2)$ with $\text{supp}(f) \subseteq E_3$ we have
\[
0 = \int_{\mathbb{G}_4} \int_{\mathbb{G}_4} v_h(f)(-h, \gamma_2) \, d\eta(h) \, F(\gamma_2) \, d\gamma_2
= \int_{\mathbb{G}_4} v_h(f) \hat{F}(h) \, d\eta(h). \tag{11}
\]

Since $L^1(\mathbb{G}_4)$ is dense in $C_0(\mathbb{G}_4)$, hence also in $L^1(\eta)$, (11) holds for all $F \in L^1(\eta)$. It follows from (6) that $h \mapsto v_h(f)$ is bounded and Borel measurable, hence in $L^\infty(\eta)$, and so by (11)
\[
v_h(f) = 0, \quad \eta\text{-a.e.} \tag{12}
\]

Let $\beta \in C_c(\mathbb{G}_4)$ satisfy $\beta = 1$ on K_n, $\beta = 0$ off G_2, and set $g(x, y) = (f \ast m_{G_4})(x) \beta(y)$, where G_4 is the annihilator of G_1. Then $g \in C_0(\mathbb{G}_1 \oplus \mathbb{G}_2)$ and, since $\text{supp}(v_h) \subseteq G_1$, we have $\lambda_n(g) = \nu_h((f \ast m_{G_1}) \beta) = v_h(f)$ for each $h \in K_n$. Hence, $h \mapsto v_h(f)$ is continuous on K_n by (ii), and this together with (12) and (iii) shows that $v_h(f) = 0$ for each $h \in K_n$. Thus, for $h \in K_n$, $0 = v_h(f) = \int_{\mathbb{G}_4} v_h(\gamma_1) f(\gamma_1) \, d\gamma_1$.

Since f is any function in $L^1(\mathbb{G}_3)$, $\text{supp}(f) \subseteq E_3$ we have $v_h(\gamma_1) = 0$ on E_3, and the claim is established. Moreover, since $\eta(G_3 \cup \bigcup_{K_n} K_n) = 0$ we have proved that $v_h \in M_{E_3}(G_3)$ a.a. $\eta(\eta)$.

Since E is a Riesz set, we may prove that $\eta \in L^1(\mathbb{G}_4)$ by arguing as in Theorem 1.

Claim 2. $(h_1, h_2, \ldots, h_p) \mapsto \{(v_{h_1} \ast v_{h_2} \ast \cdots \ast v_{h_p}) \times \delta_{(h_1 + h_2 + \cdots + h_p)})(g) \}$ is a Borel measurable function on $(\mathbb{G}_4)^p$ for each $g \in C_0(\mathbb{G}_3 \oplus \mathbb{G}_4)$.

Indeed, since $v_h = 0$ if $h \not\in G_2$, we have $(v_{h_1} \ast v_{h_2} \ast \cdots \ast v_{h_p}) \times \delta_{(h_1 + h_2 + \cdots + h_p)} = 0$ for $(h_1, h_2, \ldots, h_p) \not\in (G_2)^p$.

On the other hand, $\lambda_n = v_h \times \delta_h$ may be regarded as a measure in $M(G_1 \oplus G_2)$.

Since G_1 and G_2 are σ-compact metrizable LCA groups, we may prove Claim 2 by arguing as in the proof of Claim 2, Theorem 1.

We now define a measure ξ in $M(G_3 \oplus \mathbb{G}_4)$ as follows
\[
\xi(f) = \int_{G_4} \cdots \int_{G_4} \{(v_{h_1} \ast \cdots \ast v_{h_p}) \times \delta_{(h_1 + \cdots + h_p)}\}(f) \, d\eta(h_1) \cdots d\eta(h_p)
\]
for $f \in C_0(G_3 \oplus \mathbb{G}_4)$.

Then we have $\xi = \mu^p$. Let E_0 be a Borel measurable set in $G_3 \oplus \mathbb{G}_4$ with $m_{G_1 \oplus G_2}(E_0) = 0$. Put $E = E_0 \cap G_1 \oplus G_2$. Since $\text{supp}(\mu^p) \subseteq G_1 \oplus G_2$, we have $\mu^p(E_0) = \mu^p(E)$. Moreover, $m_{G_1 \oplus G_2}(E) = 0$. Thus we can prove that $\mu^p(E_0) = 0$ by using the techniques employed in Theorem 1. That is $\mu^p \in L^1(G_3 \oplus \mathbb{G}_4)$. This completes the proof.

From Lemma 2 and Lemma 3, we obtain the following main theorem.

Theorem 2. Let G_1 and G_2 be LCA groups. Let E_1 be a small p set in \mathbb{G}_1 and E_2 a Riesz set in \mathbb{G}_2. Then $E_1 \times E_2$ is a small p set in $G_1 \oplus G_2$.
Finally, the author wishes to express his thanks to Dr. S. Saeki for his valuable advice.

REFERENCES

DEPARTMENT OF MATHEMATICS, JOSAI UNIVERSITY, SAKADO, SAITAMA, JAPAN