Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ M$-ideals, the strong $ 2$-ball property and some renorming theorems


Author: David Yost
Journal: Proc. Amer. Math. Soc. 81 (1981), 299-303
MSC: Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1981-0593475-7
MathSciNet review: 593475
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Examples are given of $ M$-ideals in Banach spaces which do not possess the strong $ 2$-ball property. This solves a problem of Alfsen and Effros. A previous example is shown to be incorrect. The technique used to construct these examples is then employed to prove negative renorming theorems for Banach spaces. The following is representative: every separable Banach space has an equivalent norm which is strictly convex but not locally uniformly convex.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces, Ann. of Math. (2) 96 (1972), 98-173. MR 0352946 (50:5432)
  • [2] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46. MR 0228983 (37:4562)
  • [3] D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. MR 0163143 (29:446)
  • [4] M. I. Kadec, On weak and strong convergence, Dokl. Akad. Nauk SSSR 122 (1958), 13-16. (Russian) MR 0098977 (20:5422)
  • [5] A. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62. MR 0430747 (55:3752)
  • [6] A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225-238. MR 0066558 (16:596d)
  • [7] R. I. Ovsepian and A. Pełczyński, The existence in every separable Banach space of a fundamental, total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $ {L_2}$, Studia Math. 54 (1975), 149-159. MR 0394137 (52:14942)
  • [8] M. A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161. MR 0482080 (58:2168)
  • [9] V. L. Smulian, Sur la structure de la sphère unitaire dans l'espace de Banach, Mat. Sb. 51 (9) (1941), 545-561. MR 0005775 (3:205d)
  • [10] S. L. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180. MR 0306873 (46:5995)
  • [11] D. T. Yost, Best approximation and intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 285-300. MR 557239 (80m:46019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0593475-7
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society