Rings with every proper image a principal ideal ring
Author:
P. F. Smith
Journal:
Proc. Amer. Math. Soc. 81 (1981), 347352
MSC:
Primary 16A04; Secondary 16A12, 16A46, 16A60
MathSciNet review:
597637
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The main result of this paper states that if is a right Noetherian right bounded prime ring such that nonzero prime ideals are maximal and such that every proper homomorphic image of is a principal right ideal ring then is right hereditary.
 [1]
David
Eisenbud and J.
C. Robson, Hereditary Noetherian prime rings, J. Algebra
16 (1970), 86–104. MR 0291222
(45 #316)
 [2]
A.
W. Goldie, Semiprime rings with maximum condition, Proc.
London Math. Soc. (3) 10 (1960), 201–220. MR 0111766
(22 #2627)
 [3]
A.
W. Goldie, Some aspects of ring theory, Bull. London Math.
Soc. 1 (1969), 129–154. MR 0265389
(42 #299)
 [4]
C.
R. Hajarnavis, Noncommutative rings whose homomorphic images are
selfinjective, Bull. London Math. Soc. 5 (1973),
70–74. MR
0314903 (47 #3452)
 [5]
C.
R. Hajarnavis and N.
C. Norton, The one and half generator property in Noetherian
rings, Comm. Algebra 9 (1981), no. 4,
381–396. MR
605028 (82c:16015), http://dx.doi.org/10.1080/00927878108822588
 [6]
J.
C. Robson, Prirings and iprirings, Quart. J. Math. Oxford
Ser. (2) 18 (1967), 125–145. MR 0217110
(36 #201)
 [7]
P.
F. Smith, On the intersection theorem, Proc. London Math. Soc.
(3) 21 (1970), 385–398. MR 0294382
(45 #3452)
 [8]
J.
T. Stafford, Completely faithful modules and ideals of simple
Noetherian rings, Bull. London Math. Soc. 8 (1976),
no. 2, 168–173. MR 0399159
(53 #3010)
 [9]
J.
T. Stafford, A simple Noetherian ring not Morita
equivalent to a domain, Proc. Amer. Math.
Soc. 68 (1978), no. 2, 159–160. MR 0466210
(57 #6090), http://dx.doi.org/10.1090/S00029939197804662100
 [10]
Abraham
Zaks, Some rings are hereditary rings, Israel J. Math.
10 (1971), 442–450. MR 0296107
(45 #5168)
 [1]
 D. Eisenbud and J. C. Robson, Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86104. MR 0291222 (45:316)
 [2]
 A. W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201220. MR 0111766 (22:2627)
 [3]
 , Some aspects of ring theory, Bull London Math. Soc. 1 (1969), 129154. MR 0265389 (42:299)
 [4]
 C. R. Hajarnavis, Noncommutative rings whose homomorphic images are selfinjective, Bull. London Math. Soc. 5 (1973), 7074. MR 0314903 (47:3452)
 [5]
 C. R. Hajarnavis and N. C. Norton, The one and half generator property in Noetherian rings, University of Warwick, February 1979, preprint. MR 605028 (82c:16015)
 [6]
 J. C. Robson, Prirings and iprirings, Quart J. Math. Oxford Ser. (2) 18 (1967), 125145. MR 0217110 (36:201)
 [7]
 P. F. Smith, On the intersection theorem, Proc. London Math. Soc. (3) 21 (1970), 385398. MR 0294382 (45:3452)
 [8]
 J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc. 8 (1976), 168173. MR 0399159 (53:3010)
 [9]
 , A simple Noetherian ring not Morita equivalent to a domain, Proc. Amer. Math. Soc. 68 (1978), 159160. MR 0466210 (57:6090)
 [10]
 A. Zaks, Some rings are hereditary rings, Israel J. Math. 10 (1971), 442450. MR 0296107 (45:5168)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
16A04,
16A12,
16A46,
16A60
Retrieve articles in all journals
with MSC:
16A04,
16A12,
16A46,
16A60
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198105976374
PII:
S 00029939(1981)05976374
Article copyright:
© Copyright 1981
American Mathematical Society
