Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rings with every proper image a principal ideal ring


Author: P. F. Smith
Journal: Proc. Amer. Math. Soc. 81 (1981), 347-352
MSC: Primary 16A04; Secondary 16A12, 16A46, 16A60
DOI: https://doi.org/10.1090/S0002-9939-1981-0597637-4
MathSciNet review: 597637
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper states that if $ R$ is a right Noetherian right bounded prime ring such that nonzero prime ideals are maximal and such that every proper homomorphic image of $ R$ is a principal right ideal ring then $ R$ is right hereditary.


References [Enhancements On Off] (What's this?)

  • [1] D. Eisenbud and J. C. Robson, Hereditary Noetherian prime rings, J. Algebra 16 (1970), 86-104. MR 0291222 (45:316)
  • [2] A. W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220. MR 0111766 (22:2627)
  • [3] -, Some aspects of ring theory, Bull London Math. Soc. 1 (1969), 129-154. MR 0265389 (42:299)
  • [4] C. R. Hajarnavis, Non-commutative rings whose homomorphic images are self-injective, Bull. London Math. Soc. 5 (1973), 70-74. MR 0314903 (47:3452)
  • [5] C. R. Hajarnavis and N. C. Norton, The one and half generator property in Noetherian rings, University of Warwick, February 1979, preprint. MR 605028 (82c:16015)
  • [6] J. C. Robson, Pri-rings and ipri-rings, Quart J. Math. Oxford Ser. (2) 18 (1967), 125-145. MR 0217110 (36:201)
  • [7] P. F. Smith, On the intersection theorem, Proc. London Math. Soc. (3) 21 (1970), 385-398. MR 0294382 (45:3452)
  • [8] J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc. 8 (1976), 168-173. MR 0399159 (53:3010)
  • [9] -, A simple Noetherian ring not Morita equivalent to a domain, Proc. Amer. Math. Soc. 68 (1978), 159-160. MR 0466210 (57:6090)
  • [10] A. Zaks, Some rings are hereditary rings, Israel J. Math. 10 (1971), 442-450. MR 0296107 (45:5168)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A04, 16A12, 16A46, 16A60

Retrieve articles in all journals with MSC: 16A04, 16A12, 16A46, 16A60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0597637-4
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society