Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The Brauer group is torsion


Author: David J. Saltman
Journal: Proc. Amer. Math. Soc. 81 (1981), 385-387
MSC: Primary 16A16; Secondary 13A20
DOI: https://doi.org/10.1090/S0002-9939-1981-0597646-5
MathSciNet review: 597646
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new proof that if $ A$ is an Azumaya algebra over a commutative ring $ R$ of rank $ {n^2}$, then $ {A^n} = A{ \otimes _R} \cdots { \otimes _R}A$ is a split Azumaya algebra $ {\text{En}}{{\text{d}}_R}(P)$. We provide a description of $ P$, including that it is a direct summand of $ {A^n}$.


References [Enhancements On Off] (What's this?)

  • [1] Nathan Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
  • [2] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
  • [3] Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
    Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 67–87 (French). MR 244270
    Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88–188 (French). MR 244271
  • [4] Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
  • [5] David J. Saltman, Norm polynomials and algebras, J. Algebra 62 (1980), no. 2, 333–345. MR 563232, https://doi.org/10.1016/0021-8693(80)90186-6
  • [6] Tsuneo Tamagawa, Representation theory and the notion of the discriminant, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) Japan Soc. Promotion Sci., Tokyo, 1977, pp. 219–227. MR 0485817

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A16, 13A20

Retrieve articles in all journals with MSC: 16A16, 13A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0597646-5
Keywords: Azumaya algebra, Brauer group
Article copyright: © Copyright 1981 American Mathematical Society