ASYMPTOTIC CONDITIONS FOR PERIODIC SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

JAMES R. WARD, JR.

Abstract. We obtain sufficient conditions for the existence of periodic solutions to
differential equations of the form

$$x^{(m)} + a_{m-1}x^{(m-1)} + \cdots + a_1x' + g(t, x) = f(t) \quad (m > 1).$$

The conditions are necessary for some classes of functions, and require no growth
condition on $g(t, x)$ for $x > 0$ ($x < 0$).

1. Introduction. We consider here ordinary differential equations of the form

$$x^{(m)} + a_{m-1}x^{(m-1)} + \cdots + a_1x' + g(t, x) = f(t) \quad (m > 1). \quad (1.1)$$

Our purpose is to give a new sufficient condition for the existence of periodic
solutions of (1.1). We include the possibility that $g(t, x)$ is bounded below by some
constant but not above. We use asymptotic conditions on $g(t, x)$ as $x \to \pm \infty$ (but
not on $g(t, x)x^{-1}$). For some classes of nonlinearities our asymptotic conditions are
also necessary. Our methods also apply in case g grows slowly at $-\infty$ or depends on
the derivatives of x up to $x^{(m-1)}$, or if g is bounded above but not below. The class
of g's which we consider include $g(t, x) = p(t)e^x$ with $p > 0$ (or < 0).

Our results are related to some of those announced by Dancer [1], to those of
Fucik and Lovicar [2], Gupta [3], Lazer [4], Mawhin [5], Mawhin and Schmitt [7],
and Reissig [8]. Our results are in substance (but not in method) related to some of
those announced in [1]. Here we allow the nonlinearity to depend on t and the
derivatives of x and do not need the regularity assumptions made on the nonlinearity
in the super linear case in [1], nor do we need uniqueness for initial value
problems. Moreover our results apply to equations of arbitrary order. The papers
[1]–[5], [7], and [8] all use assumptions on the growth of the nonlinearity at each of
$\pm \infty$. Here we make no assumption on the growth of $g(t, x)$ for $x > 0$ (or else
none for $x < 0$) and this is perhaps the most interesting aspect of our results. In
the special case of $m = 1$ in equation (1.1) Mawhin in [6, p. 71] has obtained results
similar to ours without our condition (c2) of Theorem 1. Our results are in fact a
partial generalization to higher order equations the existence result of [6, p. 71]. The
method of obtaining a priori bounds for the solutions in [6, p. 71] is however
specific to the case of a first order equation.
Our proof makes use of an abstract continuation theorem of Mawhin. For the convenience of the reader we state this theorem in §2, and in §3 we state and prove our theorem.

2. Preliminaries. Let X and Z be normed vector spaces, $L: D(L) \subseteq X \to Z$ a linear Fredholm mapping of index zero ($\text{index}(L) = \dim \ker(L) - \text{codim} \text{Im}(L)$) and $N: X \to Z$ a continuous mapping. It follows that there exist continuous projections $P: X \to X$ and $Q: Z \to Z$ such that $\text{Im}(P) = \ker(L)$ and $\text{Im}(L) = \ker(Q) = \text{Im}(I - Q)$. Moreover the mapping $L: D(L) \cap \ker(P) \to \text{Im}(L)$ is invertible; denote its inverse by K. Let Ω be an open bounded subset of X. The mapping N is said to be L-compact on Ω if $QN(\Omega)$ is bounded and $K(I - Q)N: \Omega \to X$ is compact. Let J be an isomorphism from $\text{Im}(Q)$ onto $\ker(L)$; such a J exists since these subspaces have the same finite dimension.

Theorem A (Mawhin [5], [6]). Let L be a Fredholm mapping of index zero and let N be L-compact on Ω. Suppose
(i) for each $\lambda \in (0, 1)$ and each $x \in \text{Dom } L \cap \partial \Omega$, $Lx + \lambda Nx \neq 0$,
(ii) $QNx \neq 0$ for each $x \in \ker L \cap \partial \Omega$ and $d(JQN, \Omega \cap \ker L, 0) \neq 0$.

Then the equation $Lx + Nx = 0$ has at least one solution in $D(L) \cap \Omega$.

Here $d(\cdot, \cdot, \cdot)$ refers to the Brouwer degree.

In what follows C^0 will denote the linear space of real valued continuous T-periodic functions on $R = (-\infty, \infty)$. The linear space C^0 is a Banach space with the usual norm for $u \in C^0$ given by $|u|_0 = \max_{t \in R} |u(t)|$. By C^m ($m > 1$) we denote the linear space of T-periodic functions with m continuous derivatives. C^0 is a Banach space with norm $|x|_m = \max \{|x^{(i)}|_0: 0 < i < m\}$.

3. Main results. Let $g: R \times R \to R$ be continuous and T-periodic ($T > 0$) in its first variable; i.e., $g(t + T, x) = g(t, x)$ for all t, x. We define two measurable functions $\mu_+, \mu_-: R \to R \cup \{-\infty, \infty\}$ by
\[
\mu_+(t) = \liminf_{x \to \infty} g(t, x), \quad t \in R,
\mu_-(t) = \limsup_{x \to -\infty} g(t, x), \quad t \in R.
\]
We assume $g(t, x)$ is bounded below for $x > 0$ and bounded above for $x < 0$. More precisely, we assume there are constants δ_+ and δ_- with $g(t, x) > \delta_+$ for $x > 0$ and $g(t, x) < \delta_-$ for $x < 0$.

Let a_1, \ldots, a_{m-1} be real constants. We consider the equation (1.1) with $f \in C^0$.

In the following, for $x \in C^m$, we let
\[
Lx = x^{(m)} + a_{m-1}x^{(m-1)} + \cdots + a_1x.'
\]

Theorem 1. Assume:

(c1) The only T-periodic solutions to the equation $Lx = 0$ are the constants.
(c2) There are numbers α and β such that for all $(t, x) \in R \times R$, $|g(t, x)| < g(t, x) + \alpha|x| + \beta$.
(c3) $\int_0^T \mu_-(t) \, dt < \int_0^T f(t) \, dt < \int_0^T \mu_+(t) \, dt$.

Then there is a number $\alpha_0 > 0$ such that equation (1.1) has a T-periodic solution provided $\alpha < \alpha_0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Remarks. In (c3) the integral on the left may be \(-\infty\) and the integral on the right may be \(+\infty\). A dual theorem is also true with $\mu_+(t) = \liminf_{x \to \infty} g(t, x)$, $\mu_-(t) = \limsup_{x \to \infty} g(t, x)$, and (c3) holding. Also, if (c2) is replaced by $|g(t, x)| < -g(t, x) + a|x| + \beta$, the same conclusions hold. Note that if $g(t, x)$ is a uniformly bounded function on $R \times R$ then it will satisfy (c2).

Before proving Theorem 1, we will prove the following lemma.

Lemma 1. Suppose that (c1) holds. Then there is a number $y > 0$ such that

$$y \int_0^T |x^{(m)}| \, dt < \int_0^T |Lx| \, dt \quad \text{for all } x \in C_T^m. \quad (3.1)$$

Proof. Suppose (3.1) fails to hold. Then for each positive integer n there is a function $x_n \in C_T^m$ with $\int_0^T x_n \, dt = 0$ and

$$\int_0^T |Lx_n| \, dt < \frac{1}{n} \int_0^T |x_n^{(m)}| \, dt. \quad (3.2)$$

Since we may divide each side of (3.2) by

$$\int_0^T |x_n| \, dt < \frac{1}{n}, \quad (3.3)$$

we may assume that $\|x_n\|_m = 1$ and

$$\int_0^T |Lx_n| \, dt < \frac{1}{n}. \quad (3.3)$$

The set $\{x_n\}_{n=1}^\infty$ is precompact in C_T^{m-1} and hence has a subsequence which we relabel as $\{x_n\}_{n=1}^\infty$, which converges in C_T^{m-1} to a function $\tilde{x} \in C_T^{m-1}$. By (3.3),

$$\lim_{n \to \infty} \int_0^T |Lx_n| \, dt = 0.$$

Hence $\{x_n^{(m)}\}_{n=1}^\infty$ converges in $L^1(0, T)$ to $-(a_{m-1}\tilde{x}^{(m-1)} + \cdots + a_1\tilde{x}')$. Therefore, since

$$x_n^{(m-1)}(t) = x_n^{(m-1)}(0) + \int_0^t x_n^{(m)}(s) \, ds$$

for $n = 1, 2, \ldots$, taking limits we conclude that $\tilde{x} \in C_T^m$ and $L\tilde{x} = 0$. Thus \tilde{x} is a constant function. Moreover, since $\int_0^T x_n \, dt = 0$ for all n, \tilde{x} also has zero mean value, and we have $\tilde{x} \equiv 0$. But $\|x_n\|_m = 1$ implies $\|	ilde{x}\|_m = 1$, and this contradiction proves the lemma.

Proof of Theorem 1. We will apply Mawhin's theorem (§2). Let

$$X = Z = C_T^0, \quad D(L) = C_T^m, \quad L: u \mapsto Lu \quad \text{for } u \in D(L).$$

Define $N: X \to X$ by $Nu(t) = g(t, u(t)) - f(t)$ for $u \in X$ and $t \in R$. Now $x \in C_T^m$ is a T-periodic solution of (1.1) if and only if $Lx + Nx = 0$.

It is well known that L is a Fredholm operator of index zero. In fact for $u \in X = Z$ we define

$$Pu = Qu = \frac{1}{T} \int_0^T u(s) \, ds.$$

Then $\ker(L) = \text{Im}(P) = R$ and $\text{Im}(L) = \ker(P) = \text{Im}(I - P)$, so that $\text{Im}(L)$ is closed and $\dim \ker(L) = 1$ and $\text{codim} \text{Im}(L) = 1$ also. Thus the mapping J may be
chosen to be the identity on R. Moreover it is easily verified that

$$K = (L|\ker P \cap \text{Dom } L)^{-1}$$

is a compact mapping from $\text{Im}(I - P)$ onto $\text{Dom}(L) = D(L)$. It is well known

that N maps X into itself continuously, and takes bounded sets into bounded sets. It follows that $K(I - P)N$ is a completely continuous self-map of X, and PN maps

bounded sets in X into bounded sets. Now we consider the family of equations

$$Lx + \lambda Nx = 0, \quad 0 < \lambda < 1,$$

(3.4)

and we will show the existence of a number $p_0 > 0$ such that if $|x|_0 > p_0$ then

$Lx + \lambda Nx \neq 0, 0 < \lambda < 1$.

For any solution x of (3.4) we have $Lx = -\lambda g(t, x) + \lambda f(t)$ and thus by (c2)

$$|Lx(t)| \leq g(t, x) + \alpha|x| + \beta + |f|_0.$$

(3.5)

Integrating (3.5) from 0 to T and observing that, by the periodicity of x and its
derivatives, we must have $\int_0^T g(t, x(t)) \, dt = \int_0^T f(t) \, dt$, we obtain

$$\int_0^T |Lx| \, dt \leq \alpha T|x|_0 + (2|f|_0 + \beta)T.$$

By Lemma 1 we have

$$\int_0^T |x^{(m)}| \, dt \leq \alpha T \mu_1^{-1}|x|_0 + (2|f|_0 + \beta)T \mu_1^{-1}.$$

(3.6)

Since x is T-periodic there are numbers z_1, \ldots, z_{m-1} in $[0, T]$ with $x^{(k)}(z_k) = 0,

1 < k < m - 1$. Using (3.6) and $x^{(k)}(t) = \int_{z_{k+1}}^{z_k} x^{(k-1)}(s) \, ds$ we obtain

$$|x^{(k)}|_0 \leq \alpha T^{m-k} \mu_1^{-1}|x|_0 + C_k, \quad 1 < k < m - 1,$$

(3.7)

where $C_k = T^{m-k} \mu_1^{-1}(2|f|_0 + \beta)$.

We will now show that there is a number $r_0 > 0$ such that for each solution x to

(3.4) there is a number $z \in [0, T]$ with $|x(z)| < r_0$. Suppose that for each positive integer n there is a $\lambda_n \in (0, 1)$ and a solution x_n of $Lx + \lambda_n Nx = 0$ with $x_n(s) > n$

for all $s \in R$. Then integrating

$$Lx_n + \lambda_n g(t, x_n) = \lambda_n f(t)$$

from 0 to T and using the periodicity of x_n, we obtain

$$\int_0^T g(t, x_n(t)) \, dt = \int_0^T f(t) \, dt.$$

But $\lim \inf_{n \to \infty} g(t, x_n(t)) > \mu_+(t)$.

By Fatou’s lemma (here we use $g(t, x) > \delta_+$ for all $x > 0$) we have

$$\int_0^T f(t) \, dt = \lim \inf_{n \to \infty} \int_0^T g(t, x_n(t)) \, dt > \int_0^T \mu_+(t) \, dt$$

which contradicts (c3). Thus there is a number $r_1 > 0$ such that if x is a solution of

(3.4) for any $0 < \lambda < 1$ there is a number $s_1 \in [0, T]$ with $x(s_1) < r_1$. Similarly by

using μ_- and Fatou’s lemma one may show the existence of a number $r_2 > 0$ such

that for any solution x there is a number $s_2 \in [0, T]$ with $x(s_2) > -r_2$. By continuity of x there is a $z \in [0, T]$ with $|x(z)| < r_0, r_0 = \max\{r_1, r_2\}$.

Using (3.7) we now have from $x(t) = \int_{s_1}^{s_2} x(s) \, ds + x(z)$ that $|x|_0 < r_0 + C_1 T + \alpha T^m \mu_1^{-1}|x|_0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus if $0 < \alpha < \alpha_0 = \mu T^{-m}$ then
\[|x|_0 < (1 - \alpha T^{-m})^{-1}(r_0 + C_1 T) \equiv p_0. \]
If $r > p_0$ then (3.4) has no solutions with $|u|_0 > r$. This verifies (i) of Mawhin's theorem for any
\[\Omega = \Omega_r = \{ u \in C^0_T: |u|_0 < r \} \text{ if } r > p_0. \]

We now verify (ii) of Mawhin's theorem. Let $x \in \ker L \cap \partial \Omega_r$; then $x \in R$ and $x = \pm r$. We have
\[QN_x = \frac{1}{T} \int_0^T g(s, x) \, ds - \frac{1}{T} \int_0^T f(s) \, ds. \]

By (c3) and two more applications of Fatou's lemma we have the existence of a $p_1 > 0$ such that $r > p_1$ implies $QN(r) > 0$ and $QN(-r) < 0$. Let $d = \max\{ p_0, p_1 \} + 1$, and $\Omega = \{ u \in C^0_T: |u|_0 < d \}$. We have $Lx + \lambda Nx \neq 0$ for $0 < \lambda < 1$ and $x \in \partial \Omega$, $QN_x \neq 0$ for $x \in \ker L \cap \partial \Omega$, and $d(QN, \ker L \cap \partial \Omega, 0) \neq 0$. By Mawhin's theorem there is a solution to the equation $Lx + Nx = 0$ in Ω. That is, equation (1.1) has a T-periodic solution.

Example. Let a_1, \ldots, a_{m-1} be real numbers such that the equation $r^{m-1} + a_{m-1}r^{m-2} + \cdots + a_1 = 0$ has no roots of the form $2n\pi T$, n an integer, $n \neq 0$. Then the equation $x^{(m)} + a_{m-1}x^{(m-1)} + \cdots + a_1x' + p(t)x = f(t)$ has a T-periodic solution if p, f are continuous T-periodic functions with $p > 0$ (< 0), $p \equiv 0$, and $\int_0^T f > 0$ (< 0).

Extensions. One could assume only Carathéodory conditions on g and f and obtain similar results.

If $g(t, x)$ in (1.1) is replaced by $g(t, x, x', \ldots, x^{(m-1)})$ similar results can be proven. Assume the existence of functions μ_\pm satisfying
\[\mu_+(t) < \liminf_{x \to \infty} g(t, x, y_1, \ldots, y_{m-1}) \]
and
\[\mu_-(t) > \limsup_{x \to -\infty} g(t, x, y_1, \ldots, y_{m-1}) \]
uniformly for (y_1, \ldots, y_{m-1}) in compact subsets of R^{m-1}. Assume the existence of nonnegative numbers $\alpha_0, \ldots, \alpha_{m-1}, \beta$ such that
\[|g(t, x, y_1, \ldots, y_{m-1})| < g(t, x, y_1, \ldots, y_{m-1}) \]
\[+ \alpha_0 |x| + \alpha_1 |y_1| + \cdots + \alpha_{m-1} |y_{m-1}| + \beta. \]

If the other hypotheses of Theorem 1 now hold, there is a number $\epsilon_0 > 0$ such that this new problem has a T-periodic solution if $\max\{ \alpha_i: 0 < i < m - 1 \} < \epsilon_0$. The proof is much the same as that of Theorem 1.

If $g(t, x)$ is strictly increasing in x for fixed t then (c3) can be seen to be necessary for a T-periodic solution.
Theorem 1 could also be extended to n-dimensional vector differential equations analogous to (1.1) by making hypotheses such as those of Theorem 7.1 of [5] on the linear part of the equation and appropriate hypotheses on the components $g_i(t, x)$ of the nonlinear part $g(t, x) = (g_i(t, x))$.

REFERENCES

2. S. Fucik and V. Lovicar, *Periodic solutions of the equation $x''(t) + g(x(t)) = p(t)$*, Časopis Pěst. Mat. 100 (1975), 160–175.

Department of Mathematics, University of Alabama, University, Alabama 35486