Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Holomorphic maps that extend to automorphisms of a ball


Author: Walter Rudin
Journal: Proc. Amer. Math. Soc. 81 (1981), 429-432
MSC: Primary 32D15; Secondary 32H99
MathSciNet review: 597656
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved, under hypotheses that may be close to minimal, that certain types of biholomorphic maps of subregions of the unit ball in $ {{\mathbf{C}}^n}$ have the extension property to which the title alludes.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256. MR 0352531 (50 #5018)
  • [2] H. Alexander, Proper holomorphic mappings in 𝐶ⁿ, Indiana Univ. Math. J. 26 (1977), no. 1, 137–146. MR 0422699 (54 #10685)
  • [3] John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529–569. MR 0422683 (54 #10669)
  • [4] Alexander Nagel and Walter Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), no. 4, 841–865. MR 0425178 (54 #13135)
  • [5] S. I. Pinčuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649.
  • [6] -, On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375-392.
  • [7] -, Analytic continuation of mappings along strictly pseudoconvex hypersurfaces, Soviet Math. Dokl. 18 (1977), 1237-1240.
  • [8] Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de 𝐶ⁿ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91–97 (French, with English summary). MR 558590 (81a:32016)
  • [9] B. Wong, Characterization of the unit ball in 𝐶ⁿ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 0492401 (58 #11521)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32D15, 32H99

Retrieve articles in all journals with MSC: 32D15, 32H99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1981-0597656-8
PII: S 0002-9939(1981)0597656-8
Article copyright: © Copyright 1981 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia