NOT EVERY \(d \)-SYMMETRIC OPERATOR IS GCR

C. RAY ROSENTRATER

ABSTRACT. Let \(T \) be an element of \(\mathcal{B}(\mathcal{H}) \), the algebra of bounded linear operators on the Hilbert space \(\mathcal{H} \). The derivation induced by \(T \) is the map \(\delta_T(X) = TX - XT \) from \(\mathcal{B}(\mathcal{H}) \) into itself. \(T \) is \(d \)-symmetric if the norm closure of the range of \(\delta_T \), \(\mathcal{R}(\delta_T) \), is closed under taking adjoints. This paper answers the question of whether every \(d \)-symmetric operator is GCR by giving an example of an NGCR weighted shift that is also \(d \)-symmetric.

Let \(\mathcal{H} \) be a complex Hilbert space and \(T \) an element of \(\mathcal{B}(\mathcal{H}) \), the algebra of bounded linear operators from \(\mathcal{H} \) into \(\mathcal{H} \). The derivation induced by \(T \) is the mapping \(\delta_T(X) = TX - XT \) from \(\mathcal{B}(\mathcal{H}) \) into itself. \(T \) is said to be \(d \)-symmetric if the norm closure of the range of \(\delta_T \), \(\mathcal{R}(\delta_T) \), is closed under taking adjoints. Examples of \(d \)-symmetric operators include the normal operators and isometries.

In [ABDW] it is proved that a necessary and sufficient condition for \(T \) to be \(d \)-symmetric is that \(\mathcal{T}T^* - T^*T \in \mathcal{C}(T) \) where \(\mathcal{C}(T) = \{ C \in \mathcal{B}(\mathcal{H}) : C \mathcal{B}(\mathcal{H}) C \subseteq \mathcal{R}(\delta_T)^- \} \). In the same paper the question is raised whether every \(d \)-symmetric operator is GCR. This paper answers that question in the negative by giving an example of a weighted shift \(T e_i = \alpha_i e_{i+1} \), \(i \in \mathbb{Z} \), that is both \(d \)-symmetric and NGCR. Recall that an operator \(T \) is GCR if every irreducible representation of \(\mathcal{C}^*(T) \), the \(\mathcal{C}^* \)-algebra generated by \(T \) and the identity operator, contains the compact operators. \(T \) is NGCR if \(\mathcal{C}^*(T) \) contains no GCR two sided ideal [A]. If \(T \) is irreducible then \(T \) is NGCR if and only if \(\mathcal{C}^*(T) \) contains no nonzero compact operator [A].

Lemma. Let \(V \) be similar to \(T \), say \(SVS^{-1} = T \). Then \(T \) is \(d \)-symmetric if and only if \(S^{-1}(T T^* - T^*T)S \in \mathcal{C}(V) \).

Proof. \(\delta_T(SXV)S^{-1} = S\delta_XVXV^{-1} = S\delta_X(X)S^{-1} \). Hence \(\mathcal{R}(\delta_T) = \mathcal{S}^* \mathcal{R}(\delta_T) \mathcal{S}^{-1} \) and it follows that \(\mathcal{C}(V) = \mathcal{S}^{-1} \mathcal{C}(T) \mathcal{S} \). Thus \(C = TT^* - T^*T \in \mathcal{C}(V) \) if and only if \(\mathcal{S}^{-1}CS \in \mathcal{C}(V) \). The lemma now follows from the result quoted above. \(\square \)

We now restrict our attention to weighted shifts. Recall that two bilateral shifts \(V e_i = \alpha_i e_{i+1} \) and \(T f_i = \beta_i f_{i+1} \) are similar if and only if there exist integer \(k \) and constant \(C \) so that \(1/C \leq |(\alpha_k \alpha_{k+1} \cdots \alpha_{k+n})/(\beta_0 \beta_1 \cdots \beta_n)| \leq C \) uniformly for
all \(n \in \mathbb{Z} \) (see [S]). If we define \(T_0 e_i = \beta_{i-k} e_{i+1} \) then \(T_0 \) is unitarily equivalent to \(T \), \(T_0 \) is similar to \(V \), and the similarity can be implemented by an operator that is diagonal with respect to \(\{ e_n \} \) (see [S]). The same results are true in the unilateral case with \(k = 0, n \in \mathbb{N} \). This leads to the following.

Corollary. Let \(V \) and \(T \) be similar (unilateral or bilateral) weighted shifts. Then \(T \) is \(d \)-symmetric if and only if \(T_0 T_0^* - T_0^* T_0 \in \mathcal{C}(V) \).

Proof. Since \(d \)-symmetry is clearly preserved under unitary equivalence, \(T \) is \(d \)-symmetric if and only if \(T_0 \) is \(d \)-symmetric. \(T_0 \) is similar to \(V \) by means of a diagonal operator \(D \). \(T_0 T_0^* - T_0^* T_0 \) is diagonal with respect to the same basis so \(D^{-1}(T_0 T_0^* - T_0^* T_0)D = T_0 T_0^* - T_0^* T_0 \). \(\square \)

Remark. If \(S \) is an invertible operator that commutes with \(C \), then it is not hard to show that \(C \in \mathcal{C}(T) \) if and only if \(CS \in \mathcal{C}(T) \). In particular, if \(C = T_0 T_0^* - T_0^* T_0 \) is a diagonal operator as in the corollary, then \(C \in \mathcal{C}(T) \) if and only if \(|C| \), the diagonal with diagonal entries the modulus of the corresponding entry in \(C \), is in \(\mathcal{C}(T) \). (It is not true in general that \(|C| \in \mathcal{C}(T) \) implies \(C \in \mathcal{C}(T) \).)

In [ABDW] it is shown that when \(T \) is \(d \)-symmetric, \(\mathcal{C}(T) \) is the linear span of the positive elements in \(\Re(\delta_T)^- \). This implies the following.

Proposition. If \(V \) is a \(d \)-symmetric weighted shift and \(T \) is a weighted shift similar to \(V \), then \(T \) is \(d \)-symmetric if and only if \(|T_0 T_0^* - T_0^* T_0| \in \Re(\delta_T)^- \).

Before we proceed to the example, we need to state a result due to O'Donovan. In [O] he proves that a bilateral shift with nonzero weights \(\{ w(i) \} \) is NGCR if and only if there exists a sequence \(n_k \to \infty \), such that \(w(i + n_k) \to w(i) \) for \(i \in \mathbb{Z} \).

Example. Let \(T \) be the bilateral weighted shift with weights defined by

\[
\begin{align*}
w(i) &= \begin{cases}
1, & i < 0, \\
\frac{1}{2}, & i = 1, \\
2, & i = 2, \\
1, & 3^k < i < 2 \cdot 3^k, \\
w(i - 2 \cdot 3^k), & 2 \cdot 3^k < i < 3^k + 1.
\end{cases}
\end{align*}
\]

Claim I. \(T \) is NGCR.

Proof. Let \(n_k = 2 \cdot 3^k \). Fix \(i < 0 \). Then for \(k > 1 \) so that \(3^k > |i| \), \(w(i + n_k) = w(2 \cdot 3^k - |i|) = 1 = w(i) \).

Fix \(i > 0 \). Then for \(k \) so that \(3^k > i \) we have \(2 \cdot 3^k < i + 2 \cdot 3^k < 3^k + 1 \) so \(w(i + n_k) = w(i + 2 \cdot 3^k) = w(i) \). In any case we have \(w(i + n_k) \to w(i) \). \(\square \)

Claim II. \(T \) is similar to the bilateral shift \(V_{e_n} = e_{n+1} \) and \(T_0 = T \).

Proof. An induction argument shows that if \(w(k) = 2 \) then \(w(k - 1) = \frac{1}{2} \) and if \(w(k) = \frac{1}{2} \) then \(w(k + 1) = 2 \). Since all other weights are 1 it follows that

\[
\frac{1}{2} < |w(0) \cdot w(1) \cdot \cdots \cdot w(n)| < 2 \quad \text{for } n \in \mathbb{Z}. \quad \square
\]
Matrix computations show that \(D = |TT^* - T^*T| \) is the diagonal operator with the weights \[
d(i) = \begin{cases}
0, & i < 0, \\
\frac{1}{4}, & i = 1, \\
\frac{15}{4}, & i = 2, \\
3, & i = 3, \\
0, & 3^k < i < 2 \cdot 3^k, \\
d(i - 2 \cdot 3^k), & 2 \cdot 3^k < i < 3^{k+1}.
\end{cases}
\]

In order to show \(T \) is \(d \)-symmetric it is enough to show that \(D = |TT^* - T^*T| \in \mathcal{R}(\delta_{\nu})^{-} \) by the proposition. As \[
\delta_{\nu} \left(- \sum_{j=0}^{n-1} \left(\frac{n-j}{n} \right) V^j D V^{*j(j+1)} \right) = D - \frac{1}{n} \sum_{j=1}^{n} V^j D V^{*j},
\]
we will be done if we show \(3^k \| \sum_{j=1}^{3^k} V^j D V^{*j} \| \to 0 \) as \(k \to \infty \).

Since conjugation by \(V \) shifts a diagonal operator one position down the diagonal, \(\sum_{j=1}^{3^k} V^j D V^{*j} \) is also a diagonal operator and its weights are \(d'(i) = \sum_{j=1}^{3^k} d(i - j) = \sum_{j=1}^{3^k} d(i - n + j) \). Thus it suffices to show that \[
\frac{1}{3^k} \sum_{j=1}^{3^k} d(i + j) \to 0 \quad \text{uniformly in } i \text{ as } k \to \infty.
\]

Claim III. \(\sum_{j=1}^{3^k} d(j) < 8 \cdot 2^{k} \).

Proof. If \(k = 1 \), then \(\sum_{j=1}^{3} d(j) = 15/2 < 8 \). Assuming \(\sum_{j=1}^{3^k} d(j) < 8 \cdot 2^{k} \) we see that \[
\sum_{j=1}^{3^{k+1}} d(j) = \sum_{j=1}^{3^k} d(j) + \sum_{j=3^k+1}^{2 \cdot 3^k} d(j) + \sum_{j=2 \cdot 3^k+1}^{3^{k+1}} d(j)
\]
\[
= 2 \sum_{j=1}^{3^k} d(j) < 8 \cdot 2^{k+1}.
\]

Claim IV. \(\sum_{j=1}^{3} d(i + j) < 8 \cdot 2^{l} \) for all \(i \in \mathbb{Z} \).

Proof. Suppose that \(-\infty < i < 3^{l} \). Since \(d(j) = 0 \) for \(j < 0 \) and \(3^{l} < j < 2 \cdot 3^{l} \), \[
\sum_{j=1}^{3^{l}} d(i + j) = \sum_{j=i+1}^{3^{l}} d(j) < \sum_{j=1}^{2 \cdot 3^{l}} d(j)
\]
\[
= \sum_{j=1}^{3^{l}} d(j) < 8 \cdot 2^{l}.
\]
by Claim III.

Let \(k > l \) and assume that \(\sum_{j=1}^{3^{l}} d(i + j) < 8 \cdot 2^{l} \) for \(i < 3^{k} \). Let \(3^{k} < i < 3^{k+1} \) and consider \[
\sum_{j=1}^{3^{l}} d(i + j) = \sum_{j=i+1}^{i+3^{l}} d(j).
\]
If \(i + 3^l < 2 \cdot 3^k \) then the sum is zero since \(d(j) = 0 \) for \(3^k < j < 2 \cdot 3^k \). For the same reason we can assume that the lower limit on the sum is at least \(2 \cdot 3^k \). Since \(d(j) = 0 \) for \(3^k+1 < j < 3^k+1 + 3^l < 2 \cdot 3^k+1 \), we can also assume that the upper limit is at most \(3^k+1 \). Hence \(\sum_{j=n+1}^{m} d(j) = \sum_{j=n+1}^{m+3^l} d(j) \) with \(2 \cdot 3^k < n < m < 3^k+1 \) and \(m - n < 3^l \). Let \(m' = m - 2 \cdot 3^k \) and \(n' = n - 2 \cdot 3^k \); then we see that
\[
\sum_{j=n+1}^{m} d(j) = \sum_{j=n'+1}^{m'} d(j) < \sum_{j=n'+1}^{n'+3^l} d(j) < 8 \cdot 2^l
\]
since \(n' < 3^k+1 - 2 \cdot 3^k = 3^l \). Hence
\[
\sum_{j=1}^{3^l} (i + j) < 8 \cdot 2^l \text{ for } i < 3^k+1. \quad \square
\]

Thus we have shown that \(T \) is both NGCR and \(d \)-symmetric.

References

Department of Mathematics, Indiana University, Bloomington, Indiana 47401

Current address: Department of Mathematics, Westmont College, Santa Barbara, California 93108