ON THE ITERATED LOGARITHM LAW FOR LOCAL TIME

EDWIN PERKINS

Abstract. If \(s(t, x) \) is the local time of a Brownian motion, we show that

\[
\theta(a) = \limsup_{t \to \infty} \inf_{|x| \leq \alpha^{1/2}(2 \log \log t)^{1/2}} s(t, x)(2t \log \log t)^{-1/2}
\]

satisfies

\[
((1 - a^{1/2}) \vee 0)^2 < \theta(a) < (2a)^{-1} \wedge 1.
\]

In particular, it follows from a result of Kesten that

\[
\limsup_{t \to \infty} s(t, x)(2t \log \log t)^{-1/2} = 1
\]

for all \(x \) a.s.

1. Introduction. Suppose \(B(t) \) is Brownian motion on a complete probability space \((\Omega, \mathcal{F}, P) \) and \(s(t, x) = (d/dx) \int_0^t I(B(s) < x) \, ds \) (\(I(A) \) is the indicator function of \(A \)) is its jointly continuous local time. Since \(s(t, 0) \) is identical in law to \(\sup_{s < t} B(s) \), the law of the iterated logarithm implies that \(\limsup_{t \to \infty} s(t, x)(2t \log \log t)^{-1/2} = 1 \) a.s. for each real \(x \), where \(\phi(t) = (2t|\log|\log t||)^{1/2} \). In Kesten [1] it is shown that

\[
\limsup_{t \to \infty} \sup_{x \in \mathbb{R}} s(t, x)(2t \log \log t)^{-1/2} = 1 \quad \text{a.s. (1)}
\]

This implies that \(\limsup_{t \to \infty} s(t, x)\phi(t)^{-1} \leq 1 \) for all real \(x \) a.s. but leaves open the question as to whether or not there is equality for all \(x \) a.s. That there is equality for all \(x \) a.s. is an easy corollary of the following theorem.

Theorem 1. Let \(\Psi(t) = t^{1/2}(2|\log|\log t||)^{1/2} \). There is a nonincreasing function \(\theta(a) \) (\(a > 0 \)) such that

(a) \(\limsup_{t \to \infty} \inf_{|x| \leq \Psi(t)} s(t, x)\phi(t)^{-1} = \theta(a) \) a.s. for all \(a > 0 \),

(b) \(\theta(a) < (2a)^{-1} \wedge 1 \) for all \(a > 0 \),

(c) \(\theta(a) > (1 - a^{1/2})^2 \) for all \(a < 1 \). \(\square \)

The method of proof is that in Kesten [1] but some simplification occurs due to the use of a maximal inequality for submartingales.

2. Main result.

Notation 2. If \(a > 0 \), let \(T(a) = \inf\{t > 0|s(t, 0) > a\} \).

Lemma 3. If \(a > 0 \), \(s(T(a), x) \) is a martingale in \(x > 0 \) and satisfies

\[
E(e^{-\lambda s(T(a), x)}) = \exp\{-\lambda \alpha(1 + 2|x|)^{-1}\} \quad (\lambda > 0).
\]

Proof. By Knight [2], \(s(T(a), x) \) is a diffusion in \(x > 0 \) with infinitesimal generator \(2yd^2/dy^2 \), and in particular is a nonnegative local martingale. Moreover,
(2) is derived in the proof of Corollary 1.2 in Knight [2]. It follows from (2) that $E(s(T(a), x)) = a < \infty$ for all x and hence $s(T(a), x)$ is a supermartingale by Fatou’s lemma. Since $E(s(T(a), x))$ is independent of x, we see that $s(T(a), x)$ must in fact be a martingale.

Proof of Theorem 1. Since $\lim \sup \sup_{t \to \infty} \inf_{|x| < \alpha \Psi(t)} s(t, x) \phi(t)^{-1}$ is measurable with respect to the tail σ-field of a Brownian motion, a well-known zero-one law implies that the above expression is a.s. equal to a nonnegative constant $\theta(\alpha)$. Clearly $\theta(\alpha) < 1$ because $\lim \sup_{t \to \infty} s(t, 0) \phi(t)^{-1} = 1$ a.s. Moreover if $t > \epsilon$, then

$$\inf_{|x| < \alpha \Psi(t)} s(t, x) \phi(t)^{-1} \leq \int_{-\alpha \Psi(t)}^{\alpha \Psi(t)} s(t, x) \phi(t)^{-1} \, dx (2\alpha \Psi(t))^{-1}$$

$$< t (2\alpha \phi(t) \Psi(t))^{-1} = (\alpha)^{-1}.$$

It remains to show (c). Fix $\alpha \in [0, 1)$ and $\alpha_1 \in (0, 1)$. Then choose $\alpha_2 \in (\alpha_1 \vee \alpha, 1)$ such that $\alpha_1 \in (\alpha_{1/2}^2 - \alpha_{1/2}^2)$ or, equivalently, $\alpha < (\alpha_{1/2}^2 - \alpha_{1/2}^2)^2$. The usual proof of the law of the iterated logarithm allows us to choose $t > 1$ such that $P(T_k < t^k$ infinitely often) = 1, where $T_k = T(\alpha_2 \phi(t^k))$. Therefore

$$P\left(\inf_{|x| < \alpha \Psi(t_k)} s(T_k, x) \phi(t_k)^{-1} > \alpha_1 \text{ infinitely often} \right)$$

$$> P\left(\inf_{|x| < \alpha \Psi(t_k)} s(T_k, x) > \alpha_1 \phi(t_k) \text{ and } T_k < t^k \text{ infinitely often} \right)$$

$$> P\left(\sup_{|x| < \alpha \Psi(t_k)} s(T_k, 0) - s(T_k, x) > (\alpha_2 - \alpha_1) \phi(t_k) \text{ only finitely often} \right). \quad (3)$$

Use a maximal inequality for submartingales and Lemma 3 to see that if $\lambda > 0$, then

$$P\left(\sup_{|x| < \alpha \Psi(t^k)} s(T_k, 0) - s(T_k, x) > (\alpha_2 - \alpha_1) \phi(t^k) \right)$$

$$< 2 P\left(\sup_{0 < x < \alpha \Psi(t^k)} s(T_k, 0) - s(T_k, x) > (\alpha_2 - \alpha_1) \phi(t^k) \right)$$

$$< 2 \exp\{-\lambda(\alpha_2 - \alpha_1) \phi(t^k)\} E\left(\exp\{\lambda(s(T_k, 0) - s(T_k, \alpha \Psi(t^k)))\} \right)$$

$$= 2 \exp\{-\lambda(\alpha_2 - \alpha_1) \phi(t^k) + \lambda \alpha_2 \phi(t^k) - \lambda \alpha_2 \phi(t^k)(1 + 2\lambda \phi(t^k))^{-1} \}$$

(by (2))

$$= 2 \exp\{-\lambda(\alpha_2(1 + 2\lambda \Psi(t^k))^{-1} - \alpha_1)\}. \quad (4)$$

An elementary calculus argument shows that (4) has a minimum value of

$$2 \exp\{- (\alpha_{1/2}^2 - \alpha_{1/2}^2)^2 \alpha^{-1}\log\log t^k \} \quad (5)$$

when $\lambda = ((\alpha_2 \alpha_1^{-1})^{1/2} - 1)(2\alpha \Psi(t^k))^{-1}$. Since $(\alpha_{1/2}^2 - \alpha_{1/2}^2)^2 > \alpha$, (5) is summable over k and therefore

$$P\left(\sup_{|x| < \alpha \Psi(t^k)} s(T_k, 0) - s(T_k, x) > (\alpha_2 - \alpha_1) \phi(t^k) \text{ only finitely often} \right) = 1.$$
by the Borel-Cantelli lemma. It follows from (3) that
\[\limsup_{k \to \infty} \inf_{|x| < \alpha \psi(T_k)} s(T_k, x) \phi(T_k)^{-1} \geq \alpha_1 \text{ a.s.} \]
for all \(\alpha_1 < (1 - \alpha^{1/2})^2 \), and hence \(\theta(\alpha) > (1 - \alpha^{1/2})^2 \). □

Since \(\theta(\infty) = 0 \), if \(h(t) \) satisfies \(\lim_{t \to \infty} h(t) \Psi(t)^{-1} = +\infty \) then
\[\limsup_{t \to \infty} \inf_{|x| < h(t)} s(t, x) \phi(t)^{-1} = 0 \text{ a.s.,} \]
and since \(\theta(0^+) = 1 \), if \(h(t) \) satisfies \(\lim_{t \to \infty} h(t) \psi(t)^{-1} = 0 \) then
\[\limsup_{t \to \infty} \inf_{|x| < h(t)} s(t, x) \phi(t)^{-1} = 1 \text{ a.s.} \]

This latter result (with \(\lim_{t \to \infty} h(t) = \infty \)), coupled with (1), gives us the following corollary.

Corollary 4. For \(\omega \) outside a single null set, \(\limsup_{t \to \infty} s(t, x) \phi(t)^{-1} = 1 \) for all \(x \). □

Remark 5. A trivial modification of the proof of Theorem 1 shows that for all \(\alpha > 0 \) there is a constant \(\theta^1(\alpha) \) satisfying (b) and (c) of Theorem 1 and also
\[\limsup_{t \to 0^+} \inf_{|x| < \alpha^{1/2}(2 \log \log r^{-1})^{-1/2}} s(t, x)(2t \log \log r^{-1})^{-1/2} = \theta^1(\alpha) \text{ a.s.} \] □

Acknowledgement. I would like to thank Professor O. Stackelberg for suggesting this problem.

References

Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5