Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extending the concept of genus to dimension $ n$


Author: Carlo Gagliardi
Journal: Proc. Amer. Math. Soc. 81 (1981), 473-481
MSC: Primary 57M15; Secondary 05C10
DOI: https://doi.org/10.1090/S0002-9939-1981-0597666-0
MathSciNet review: 597666
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some graph-theoretical tools are used to introduce the concept of "regular genus" $ \mathcal{G}({M_n})$, for every closed $ n$-dimensional PL-manifold $ {M_n}$. Then it is proved that the regular genus of every surface equals its genus, and that the regular genus of every $ 3$-manifold $ {M_3}$ equals its Heegaard genus, if $ {M_3}$ is orientable, and twice its Heegaard genus, if $ {M_3}$ is nonorientable. A geometric approach, and some applications in dimension four are exhibited.


References [Enhancements On Off] (What's this?)

  • [F] M. Ferri, Crystallisations of $ 2$-fold branched coverings of $ {S^3}$, Proc. Amer. Math. Soc. 73 (1979), 271-276. MR 516477 (80k:57037)
  • [FG] M. Ferri and C. Gagliardi, Crystallisation moves, Pacific J. Math. (to appear). MR 661442 (83i:57011)
  • [G1] C. Gagliardi, Spezzamenti alla Heegaard per varietà $ n$-dimensionali, Boll. Un. Mat. Ital. 13-A (1976), 302-311. MR 0436158 (55:9108)
  • [G2] -, A combinatorial characterization of $ 3$-manifold crystallization, Boll. Un. Mat. Ital. 16-A (1979), 441-449. MR 551367 (81a:57003)
  • [G3] -, How to deduce the fundamental group of a closed $ n$-manifold from a contracted triangulation, J. Combin. Inform. System Sci. 4 (1979), 237-252. MR 586313 (81m:57014)
  • [G4] -, Regular imbeddings of edge-coloured graphs, Geom. Dedicata (to appear). MR 637916 (83g:05032)
  • [Gl] L. C. Glaser, Geometrical combinatorial topology, Vol. I$ ^\circ$, Van Nostrand Reinhold, New York, 1970.
  • [Ha] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 0256911 (41:1566)
  • [He] J. Hempel, $ 3$-manifolds, Princeton Univ. Press, Princeton, N. J., 1976. MR 0415619 (54:3702)
  • [HW] P. J. Hilton and S. Wylie, An introduction to algebraic topology-homology theory, Cambridge Univ. Press, New York, 1960. MR 0115161 (22:5963)
  • [M] J. M. Montesinos, Sobre la representacion de varietades tridimensionales, Mimeographed notes, 1976.
  • [P1] M. Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1975), 269-277. MR 0402792 (53:6606)
  • [P2] -, Diagrammi di Heegaard e triangolazione contratta, Boll. Un. Mat. Ital. 12-A Suppl. Fasc. 3 (1975), 98-105. MR 0425969 (54:13918)
  • [P0] H. Poincaré, Cinquième complément à l'analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110.
  • [R] D. Rolfsen, Knots and links, Publish or Perish, Boston, Mass., 1976. MR 0515288 (58:24236)
  • [S] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88-111. MR 1501673
  • [ST] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934.
  • [W] A. T. White, Graphs, groups, and surfaces, North-Holland, Amsterdam, 1973.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M15, 05C10

Retrieve articles in all journals with MSC: 57M15, 05C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0597666-0
Keywords: PL-manifold, genus, Heegaard genus, Heegaard diagram, multigraph, $ 2$-cell imbedding, line-colouring, $ (n + 1)$-coloured graph, regular imbedding, regular genus, crystallisation, pseudocomplex, contracted complex
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society