Inductive dimension and inverse sequences of compact spaces

Author:
M. G. Charalambous

Journal:
Proc. Amer. Math. Soc. **81** (1981), 482-484

MSC:
Primary 54F45

DOI:
https://doi.org/10.1090/S0002-9939-1981-0597667-2

MathSciNet review:
597667

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an inverse sequence of compact Hausdorff spaces each of which has inductive dimension one while the limit space of the sequence has large inductive dimension two.

**[1]**M. G. Charalambous,*The dimension of inverse limits*, Proc. Amer. Math. Soc.**58**(1976), 289-295. MR**0410696 (53:14443)****[2]**-,*An example concerning inverse limit sequences of normal spaces*, Proc. Amer. Math. Soc.**78**(1980), 605-607. MR**556641 (81e:54032)****[3]**R. Engelking,*Dimension theory*, Polish Scientific Publishers, Warsaw, 1978. MR**0482697 (58:2753b)****[4]**V. V. Fedorčuk,*Compact spaces without intermediate dimensions*, Soviet Math. Dokl.**14**(1973), 1808-1811.**[5]**A. R. Pears,*Dimension theory of general spaces*, Cambridge University Press, Cambridge, 1975. MR**0394604 (52:15405)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F45

Retrieve articles in all journals with MSC: 54F45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0597667-2

Keywords:
Inverse sequence,
covering dimension,
inductive dimension

Article copyright:
© Copyright 1981
American Mathematical Society