Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Knots with Heegaard genus $ 2$ complements are invertible

Author: Richard P. Osborne
Journal: Proc. Amer. Math. Soc. 81 (1981), 501-502
MSC: Primary 57M25
MathSciNet review: 597671
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a polyhedral oriented knot in $ {S^3}$ and $ N(K)$ be a regular neighborhood of $ K$. If $ {S^3} \sim \mathop N\limits^ \circ (K)$ can be constructed by attaching a single $ 2$-handle to a genus two handlebody, then there is a homeomorphism of $ {S^3}$ onto itself mapping $ K$ onto itself and reversing the orientation of $ K$.

References [Enhancements On Off] (What's this?)

  • [O&S] R. P. Osborne and R. S. Stevens, Group presentations corresponding to spines of $ 3$-manifolds. III, Trans. Amer. Math. Soc. 234 (1977), 245-251. MR 0488063 (58:7634b)
  • [B&H] J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $ {S^3}$, Trans. Amer. Math. Soc. 213 (1974), 315-352. MR 0380765 (52:1662)
  • [Rolf] D. Rolfsen, Knots and links, Publish or Perish, Cambridge, Mass., 1976. MR 0515288 (58:24236)
  • [Fox] R. H. Fox, A quick trip through knot theory, Topology of $ 3$-Manifolds, M. K. Fort, Jr., ed., Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0140099 (25:3522)
  • [Trot] H. F. Trotter. Non-invertible knots exist, Topology 2 (1964), 275-280. MR 0158395 (28:1618)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society