Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Essential numerical range in $ B(l\sb{1})$


Authors: D. A. Legg and D. W. Townsend
Journal: Proc. Amer. Math. Soc. 81 (1981), 541-545
MSC: Primary 47A12
DOI: https://doi.org/10.1090/S0002-9939-1981-0601725-3
MathSciNet review: 601725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In recent years, the numerical range lifting problem has been solved for operators on $ {l_p}$, $ 1 < p < \infty $, and on certain Orlicz spaces $ {l_M}$. Specifically, given an operator $ A$, there exists a compact perturbation $ A + C$ such that the numerical range of $ A + C$ equals the essential numerical range of $ A$. This result has also been established for essentially Hermitian operators on $ {l_1}$. In the present paper, the authors establish this result for all operators on $ {l_1}$.


References [Enhancements On Off] (What's this?)

  • [1] G. D. Allen and J. D. Ward, Hermitian liftings in $ B({l_p})$, J. Operator Theory 1 (1979), 27-36. MR 526288 (80b:47040)
  • [2] G. D. Allen, D. A. Legg and J. D. Ward, Hermitian liftings in Orlicz sequence spaces, Pacific J. Math. (to appear). MR 590549 (82a:47031)
  • [3] -, Essentially Hermitian operators in 5(Zj,), Proc. Amer. Math. Soc. 80 (1980), 71-77. MR 574511 (81f:47028)
  • [4] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge Univ. Press, Cambridge, 1973. MR 0288583 (44:5779)
  • [5] -, Numerical ranges. II, Cambridge Univ. Press, Cambridge, 1973. MR 0442682 (56:1063)
  • [6] C. K. Chui, D. A. Legg, P. W. Smith and J. D. Ward, On a question of Olsen concerning compact perturbations of operators, Michigan Math. J. 24 (1977), 119-127. MR 0451005 (56:9295)
  • [7] C. K. Chui, P. W. Smith, R. R. Smith and J. D. Ward, $ L$-ideals and numerical range preservation, Illinois J. Math. 21 (1977), 365-373. MR 0430817 (55:3822)
  • [8] D. A. Legg and J. D. Ward, Essentially Hermitian operators on $ {l_1}$ are compact perturbations of Hermitians, Proc. Amer. Math. Soc. 67 (1977), 224-226. MR 0458210 (56:16413)
  • [9] J. Mach and J. D. Ward, Approximation by compact operators on certain Banach spaces, J. Approximation Theory 23 (1978), 274-286. MR 505751 (80j:47054)
  • [10] R. R. Smith and J. D. Ward, $ M$-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349. MR 0467316 (57:7175)
  • [11] J. G. Stampfli, Compact perturbations, normed eigenvalues and a problem of Salinas, J. London Math. Soc. 2 (1974), 165-175. MR 0365196 (51:1449)
  • [12] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. (2) 20 (1968), 417-424. MR 0243352 (39:4674)
  • [13] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 0098966 (20:5411)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A12

Retrieve articles in all journals with MSC: 47A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601725-3
Keywords: Essential numerical range, Calkin algebra, lifting problems, $ M$-ideal
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society