Essential numerical range in

Authors:
D. A. Legg and D. W. Townsend

Journal:
Proc. Amer. Math. Soc. **81** (1981), 541-545

MSC:
Primary 47A12

DOI:
https://doi.org/10.1090/S0002-9939-1981-0601725-3

MathSciNet review:
601725

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In recent years, the numerical range lifting problem has been solved for operators on , , and on certain Orlicz spaces . Specifically, given an operator , there exists a compact perturbation such that the numerical range of equals the essential numerical range of . This result has also been established for essentially Hermitian operators on . In the present paper, the authors establish this result for all operators on .

**[1]**G. D. Allen and J. D. Ward,*Hermitian liftings in*, J. Operator Theory**1**(1979), 27-36. MR**526288 (80b:47040)****[2]**G. D. Allen, D. A. Legg and J. D. Ward,*Hermitian liftings in Orlicz sequence spaces*, Pacific J. Math. (to appear). MR**590549 (82a:47031)****[3]**-,*Essentially Hermitian operators in***5(Zj,)**, Proc. Amer. Math. Soc.**80**(1980), 71-77. MR**574511 (81f:47028)****[4]**F. F. Bonsall and J. Duncan,*Numerical ranges of operators on normed spaces and of elements of normed algebras*, Cambridge Univ. Press, Cambridge, 1973. MR**0288583 (44:5779)****[5]**-,*Numerical ranges*. II, Cambridge Univ. Press, Cambridge, 1973. MR**0442682 (56:1063)****[6]**C. K. Chui, D. A. Legg, P. W. Smith and J. D. Ward,*On a question of Olsen concerning compact perturbations of operators*, Michigan Math. J.**24**(1977), 119-127. MR**0451005 (56:9295)****[7]**C. K. Chui, P. W. Smith, R. R. Smith and J. D. Ward,*-ideals and numerical range preservation*, Illinois J. Math.**21**(1977), 365-373. MR**0430817 (55:3822)****[8]**D. A. Legg and J. D. Ward,*Essentially Hermitian operators on**are compact perturbations of Hermitians*, Proc. Amer. Math. Soc.**67**(1977), 224-226. MR**0458210 (56:16413)****[9]**J. Mach and J. D. Ward,*Approximation by compact operators on certain Banach spaces*, J. Approximation Theory**23**(1978), 274-286. MR**505751 (80j:47054)****[10]**R. R. Smith and J. D. Ward,*-ideal structure in Banach algebras*, J. Funct. Anal.**27**(1978), 337-349. MR**0467316 (57:7175)****[11]**J. G. Stampfli,*Compact perturbations, normed eigenvalues and a problem of Salinas*, J. London Math. Soc.**2**(1974), 165-175. MR**0365196 (51:1449)****[12]**J. G. Stampfli and J. P. Williams,*Growth conditions and the numerical range in a Banach algebra*, Tôhoku Math. J. (2)**20**(1968), 417-424. MR**0243352 (39:4674)****[13]**A. E. Taylor,*Introduction to functional analysis*, Wiley, New York, 1958. MR**0098966 (20:5411)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A12

Retrieve articles in all journals with MSC: 47A12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0601725-3

Keywords:
Essential numerical range,
Calkin algebra,
lifting problems,
-ideal

Article copyright:
© Copyright 1981
American Mathematical Society