Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A geometric variant of Badé's theorem on dominating measures


Author: Mahlon M. Day
Journal: Proc. Amer. Math. Soc. 81 (1981), 554-556
MSC: Primary 46B20; Secondary 47D30
MathSciNet review: 601728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{B}$ be a bounded Boolean algebra of projections in a superreflexive Banach space $ B$. Then for each $ b$ in $ B$ there is a $ \beta = \varphi (b)$ in $ {B^*}$ such that $ \varphi $ is norm-norm uniformly bicontinuous and $ \beta (Pb) = 0$ if and only if $ Pb = 0$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 47D30

Retrieve articles in all journals with MSC: 46B20, 47D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601728-9
Article copyright: © Copyright 1981 American Mathematical Society