Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of totally geodesic hypersurfaces of $ S\sp{n+1}$ and $ {\bf C}P\sp{n+1}$


Author: Kinetsu Abe
Journal: Proc. Amer. Math. Soc. 81 (1981), 603-606
MSC: Primary 53C42
DOI: https://doi.org/10.1090/S0002-9939-1981-0601739-3
MathSciNet review: 601739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a complete hypersurface in $ {S^{n + 1}}$ (or $ {\mathbf{C}}{P^{n + 1}}$). Assume that through each point $ x$ of $ M$ a (local) $ \mu (x)$-dimensional totally geodesic submanifold $ {S_x}$ of $ {S^{n + 1}}$ (or $ {\mathbf{C}}{P^{n + 1}}$) exists in $ M$. A sufficient condition for $ M$ itself to be totally geodesic is given in terms of $ \mu (x)$.


References [Enhancements On Off] (What's this?)

  • [1] K. Abe, Application of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J. 25 (1973), 425-444. MR 0350671 (50:3163)
  • [2] -, Some remarks on a class of submanifolds in space forms of non-negative curvature, Math. Ann. 247 (1980), 275-280. MR 568992 (82a:53056)
  • [3] D. Ferus, Totally geodesic foliation, Math. Ann. 188 (1970), 313-316. MR 0271872 (42:6753)
  • [4] -, Isometric immersions of constant curvature manifolds, Math. Ann. 217 (1975), 155-156. MR 0407769 (53:11540)
  • [5] E. Cartan, Lecons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946. MR 0020842 (8:602g)
  • [6] D. S. Leung and K. Nomizu, The axiom of sphere in Riemannian geometry, J. Differential Geometry 5 (1971), 487-489. MR 0290288 (44:7472)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42

Retrieve articles in all journals with MSC: 53C42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601739-3
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society