Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On universal null sets


Authors: E. Grzegorek and C. Ryll-Nardzewski
Journal: Proc. Amer. Math. Soc. 81 (1981), 613-617
MSC: Primary 04A15; Secondary 28A05
DOI: https://doi.org/10.1090/S0002-9939-1981-0601741-1
MathSciNet review: 601741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If all subsets of cardinality less than $ {2^{{\aleph _0}}}$ of the real line $ R$ are Lebesgue measurable then there exists a permutation $ p$ of $ R$ with $ p = {p^{ - 1}}$ such that on the $ \sigma $-field generated by $ \mathcal{B} \cup p(\mathcal{B})$ there is no continuous probability measure.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Sur les suites d'ensembles excluant l'existence d'une mesure (Note posthume avec préface et commentaire de E. Marczewski), Colloq. Math. 1 (1948), 103-108. MR 0025547 (10:23e)
  • [2] S. Braun and E. Szpilrajn-Marczewski (en collaboration avec C. Kuratowski), Annexe, Fund. Math. 1 (1937), 225-254.
  • [3] R. B. Darst, A characterization of bimeasurable functions in terms of universally measurable sets, Proc. Amer. Math. Soc. 27 (1971), 566-571. MR 0274694 (43:456)
  • [4] E. Grzegorek, Solution of a problem of Banach on $ \sigma $-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. (1979/1980) (to appear). MR 616191 (82h:04005)
  • [5] C. Kuratowski, Topology. I, Academic Press, New York; PWN, Warsaw, 1966. MR 0193605 (33:1823)
  • [6] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. MR 0422027 (54:10019)
  • [7] E. Marczewski, Remarque sur la measurabilité absolute, Colloq. Math. 1 (1948), 42-43.
  • [8] D. A. Martin and R. M. Soloway, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-148. MR 0270904 (42:5787)
  • [9] R. D. Mauldin, Some effects of set-theoretical assumption in measure theory, Advances in Math. 27 (1978), 45-62. MR 480385 (80i:28021)
  • [10] J. C. Oxtoby, Measure and category, Springer-Verlag, Berlin and New York, 1971. MR 584443 (81j:28003)
  • [11] W. Sierpiński and E. Szpilrajn-Marczewski, Remarque sur le problème de la mesure, Fund. Math. 26 (1936), 256-261.
  • [12] E. Szpilrajn-Marczewski, On the isomorphism and the equivalence of classes and sequences of sets, Fund. Math. 32 (1939), 133-148.
  • [13] -, Sur les ensembles et les fonctions absolument mesurables, C. R. Soc. Sci. Lett. Varsovie, Cl. III 30 (1937), 39-68 (Polish). (An English translation, by John C. Morgan II, of this article is available in manuscript.)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15, 28A05

Retrieve articles in all journals with MSC: 04A15, 28A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601741-1
Keywords: $ \sigma $-field of sets, continuous measure, Lebesgue measure, universal null set, universally measurable set, Borel set, universally measurable function, bimeasurable function, continuum hypothesis, Martin's Axiom
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society