Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quadratic integration of Gaussian processes


Author: T. F. Lin
Journal: Proc. Amer. Math. Soc. 81 (1981), 618-623
MSC: Primary 60G15
DOI: https://doi.org/10.1090/S0002-9939-1981-0601742-3
MathSciNet review: 601742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ x(t),0 \leqslant t \leqslant T$, be a Gaussian process whose covariance function $ R(s, t)$ satisfies certain conditions. If $ G(x)$ satisfies some mild condition, then the quadratic integral $ {L^2} - \lim {\sum _k}G(x({t_k}))\Delta x{({t_k})^2}$ along any sequence of paritions of $ [0,T]$ whose mesh goes to zero exists. The differential rule for $ x(t)$ is also derived.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc. 7 (1956), 522-527. MR 0090920 (19:890f)
  • [2] G. A. Brosmler, Quadratic variation of potentials and harmonic functions, Trans. Amer. Math. Soc. 149(1970), 243-257. MR 0270442 (42:5330)
  • [3] S. T. Huang and S. Cambanis, Gaussian processes: Nonlinear analysis and stochastic calculus, Lecture Notes in Math., vol. 695, Springer-Verlag, Berlin and New York, 1974/75. MR 527083 (81e:60038)
  • [4] E. Wong and M. Zakai, The oscillation of stochastic integrals, Z. Wahrsch. Verw. Gebiete 4 (1965), 103-112. MR 0185650 (32:3112)
  • [5] A. T. Wang, Quadratic variation of functionals of Brownian motion, Ann. Probab. 5 (1977), 756-769. MR 0445622 (56:3958)
  • [6] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973. MR 0474528 (57:14166)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G15

Retrieve articles in all journals with MSC: 60G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601742-3
Keywords: Gaussian process, covariance function, quadratic integral, Ito's formula
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society