Transitivity and the -space conjecture in ordered spaces
Author:
Jacob Kofner
Journal:
Proc. Amer. Math. Soc. 81 (1981), 629-635
MSC:
Primary 54F05; Secondary 54E15
DOI:
https://doi.org/10.1090/S0002-9939-1981-0601744-7
MathSciNet review:
601744
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Each generalized ordered -space is nonarchimedean quasimetrizable. Moreover, each generalized ordered space is
-transitive, i.e. for each neighbournet
there is a transitive neighbournet
.
- [B]
H. R. Bennett, Quasimetrizability and the
-space property in certain generalized ordered spaces, Topology Proceedings 4 (1979), 1-13. MR 583684 (81m:54063)
- [ELu] R. Engelking and D. J. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1976). MR 0428278 (55:1303)
- [FL1] P. Fletcher and W. F. Lindgren, Transitive quasiuniformities, J. Math. Anal. Appl. 39 (1972), 397-405. MR 0317281 (47:5828)
- [FL2] -, Quasiuniformities with a transitive base, Pacific J. Math. 43 (1972), 619-631. MR 0319155 (47:7701)
- [FL3] -, Quasiuniform spaces (to appear).
- [F] R. Fox, On metrizability and quasi-metrizability (to appear).
- [G] G. Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977), 360-366. MR 0436089 (55:9040)
- [H] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263. MR 0293580 (45:2657)
- [J1] H. Junnila, Covering properties and quasi-uniformities of topological spaces, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., 1978.
- [J2] -, Neighbournets, Pacific J. Math. 76 (1978), 83-108. MR 0482677 (58:2734)
- [K]
J. Kofner, On
-metrizable spaces, Math. Notes 13 (1973), 168-174. MR 0324664 (48:3014)
- [LF] W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240. MR 0341422 (49:6173)
- [Lu] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89 (1971). MR 0324668 (48:3018)
- [N1] V. V. Niemytzki, On the third axiom of metric spaces, Trans. Amer. Math. Soc. 29 (1927), 507-513. MR 1501402
- [N2] -, Über die Axioms des metrischen Raumes, Math. Ann. 106 (1931), 666-671.
- [T] Topology Proceedings 2 (1977), p. 687.
- [W] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684. MR 1506845
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F05, 54E15
Retrieve articles in all journals with MSC: 54F05, 54E15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1981-0601744-7
Keywords:
Quasimetric,
nonarchimedean,
-space,
ordered space,
transitive space,
neighbournet
Article copyright:
© Copyright 1981
American Mathematical Society