Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Transitivity and the $ \gamma $-space conjecture in ordered spaces


Author: Jacob Kofner
Journal: Proc. Amer. Math. Soc. 81 (1981), 629-635
MSC: Primary 54F05; Secondary 54E15
DOI: https://doi.org/10.1090/S0002-9939-1981-0601744-7
MathSciNet review: 601744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Each generalized ordered $ \gamma $-space is nonarchimedean quasimetrizable. Moreover, each generalized ordered space is $ 3$-transitive, i.e. for each neighbournet $ U$ there is a transitive neighbournet $ V \subset {U^3}$.


References [Enhancements On Off] (What's this?)

  • [B] H. R. Bennett, Quasimetrizability and the $ \gamma $-space property in certain generalized ordered spaces, Topology Proceedings 4 (1979), 1-13. MR 583684 (81m:54063)
  • [ELu] R. Engelking and D. J. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1976). MR 0428278 (55:1303)
  • [FL1] P. Fletcher and W. F. Lindgren, Transitive quasiuniformities, J. Math. Anal. Appl. 39 (1972), 397-405. MR 0317281 (47:5828)
  • [FL2] -, Quasiuniformities with a transitive base, Pacific J. Math. 43 (1972), 619-631. MR 0319155 (47:7701)
  • [FL3] -, Quasiuniform spaces (to appear).
  • [F] R. Fox, On metrizability and quasi-metrizability (to appear).
  • [G] G. Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977), 360-366. MR 0436089 (55:9040)
  • [H] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263. MR 0293580 (45:2657)
  • [J1] H. Junnila, Covering properties and quasi-uniformities of topological spaces, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., 1978.
  • [J2] -, Neighbournets, Pacific J. Math. 76 (1978), 83-108. MR 0482677 (58:2734)
  • [K] J. Kofner, On $ \Delta $-metrizable spaces, Math. Notes 13 (1973), 168-174. MR 0324664 (48:3014)
  • [LF] W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240. MR 0341422 (49:6173)
  • [Lu] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89 (1971). MR 0324668 (48:3018)
  • [N1] V. V. Niemytzki, On the third axiom of metric spaces, Trans. Amer. Math. Soc. 29 (1927), 507-513. MR 1501402
  • [N2] -, Über die Axioms des metrischen Raumes, Math. Ann. 106 (1931), 666-671.
  • [T] Topology Proceedings 2 (1977), p. 687.
  • [W] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684. MR 1506845

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F05, 54E15

Retrieve articles in all journals with MSC: 54F05, 54E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0601744-7
Keywords: Quasimetric, nonarchimedean, $ \gamma $-space, ordered space, transitive space, neighbournet
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society