Transitivity and the -space conjecture in ordered spaces

Author:
Jacob Kofner

Journal:
Proc. Amer. Math. Soc. **81** (1981), 629-635

MSC:
Primary 54F05; Secondary 54E15

MathSciNet review:
601744

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Each generalized ordered -space is nonarchimedean quasimetrizable. Moreover, each generalized ordered space is -transitive, i.e. for each neighbournet there is a transitive neighbournet .

**[B]**H. R. Bennett,*Quasimetrizability and the 𝛾-space property in certain generalized ordered spaces*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 1–12 (1980). MR**583684****[ELu]**R. Engelking and D. Lutzer,*Paracompactness in ordered spaces*, Fund. Math.**94**(1977), no. 1, 49–58. MR**0428278****[FL1]**P. Fletcher and W. F. Lindgren,*Transitive quasi-uniformities*, J. Math. Anal. Appl.**39**(1972), 397–405. MR**0317281****[FL2]**Peter Fletcher and William F. Lindgren,*Quasi-uniformities with a transitive base*, Pacific J. Math.**43**(1972), 619–631. MR**0319155****[FL3]**-,*Quasiuniform spaces*(to appear).**[F]**R. Fox,*On metrizability and quasi-metrizability*(to appear).**[G]**Gary Gruenhage,*A note on quasi-metrizability*, Canad. J. Math.**29**(1977), no. 2, 360–366. MR**0436089****[H]**R. E. Hodel,*Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points*, Duke Math. J.**39**(1972), 253–263. MR**0293580****[J1]**H. Junnila,*Covering properties and quasi-uniformities of topological spaces*, Ph.D. thesis, Virginia Polytech. Inst. and State Univ., 1978.**[J2]**Heikki J. K. Junnila,*Neighbornets*, Pacific J. Math.**76**(1978), no. 1, 83–108. MR**0482677****[K]**Ja. A. Kofner,*Δ-metrizable spaces*, Mat. Zametki**13**(1973), 277–287 (Russian). MR**0324664****[LF]**W. F. Lindgren and P. Fletcher,*Locally quasi-uniform spaces with countable bases*, Duke Math. J.**41**(1974), 231–240. MR**0341422****[Lu]**D. J. Lutzer,*On generalized ordered spaces*, Dissertationes Math. Rozprawy Mat.**89**(1971), 32. MR**0324668****[N1]**V. W. Niemytzki,*On the “third axiom of metric space”*, Trans. Amer. Math. Soc.**29**(1927), no. 3, 507–513. MR**1501402**, 10.1090/S0002-9947-1927-1501402-2**[N2]**-,*Über die Axioms des metrischen Raumes*, Math. Ann.**106**(1931), 666-671.**[T]**Topology Proceedings**2**(1977), p. 687.**[W]**W. A. Wilson,*On Quasi-Metric Spaces*, Amer. J. Math.**53**(1931), no. 3, 675–684. MR**1506845**, 10.2307/2371174

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F05,
54E15

Retrieve articles in all journals with MSC: 54F05, 54E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0601744-7

Keywords:
Quasimetric,
nonarchimedean,
-space,
ordered space,
transitive space,
neighbournet

Article copyright:
© Copyright 1981
American Mathematical Society