Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ S$-groups revisited


Authors: Roger Hunter and Elbert Walker
Journal: Proc. Amer. Math. Soc. 82 (1981), 13-18
MSC: Primary 20K10
DOI: https://doi.org/10.1090/S0002-9939-1981-0603592-0
MathSciNet review: 603592
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a new characterization of $ S$-groups which is used to develop central results of the theory and, in particular, to show that summands of $ S$-groups are $ S$-groups.


References [Enhancements On Off] (What's this?)

  • [1] L. Fuchs, Infinite abelian groups, vol. II, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [2] R. H. Hunter, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc. 215 (1976), 81-98. MR 0507068 (58:22337)
  • [3] R. Hunter, F. Richman and E. Walker, Warfield modules, Abelian Group Theory, Proc. 2nd New Mexico State Univ. Conf. (1976), Lecture Notes in Math., vol. 616, Springer-Verlag, Berlin and New York, 1977, pp. 87-123. MR 0506216 (58:22041)
  • [4] T. Koyama, On $ p$-indicators in $ {\text{Ext}}(Q/Z,T)$, Hiroshima Math. J. 8 (1978), 211-216. MR 0486211 (58:5982)
  • [5] R. Mines, A family of functors defined on generalized primary groups, Pacific J. Math. 26 (1968), 349-360. MR 0238958 (39:318)
  • [6] R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212. MR 0218452 (36:1538)
  • [7] F. Richman and E. Walker, Valuated groups, J. Algebra 56 (1979), 145-167. MR 527162 (80k:20053)
  • [8] R. O. Stanton, $ S$-groups (preprint).
  • [9] E. A. Walker, Ulm's theorem for totally projective $ p$-groups, Proc. Amer. Math. Soc. 37 (1973), 387-392. MR 0311805 (47:367)
  • [10] K. D. Wallace, On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra 17 (1971), 482-488. MR 0272891 (42:7772)
  • [11] R. B. Warfield, Jr., A classification theorem for abelian $ p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149-168. MR 0372071 (51:8288)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K10

Retrieve articles in all journals with MSC: 20K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0603592-0
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society