Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subordination by univalent functions


Authors: Sunder Singh and Ram Singh
Journal: Proc. Amer. Math. Soc. 82 (1981), 39-47
MSC: Primary 30C55
DOI: https://doi.org/10.1090/S0002-9939-1981-0603598-1
MathSciNet review: 603598
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be the class of functions $ f(z) = z + {a_2}{z^2} + \cdots $, which are regular and univalently convex in $ \left\vert z \right\vert < 1$. In this paper we establish certain subordination relations between an arbitrary member $ f$ of $ K$, its partial sums and the functions $ (\lambda /z)\int_0^z {f(t)dt} $ and $ \mu \int_0^z {{t^{ - 1}}f(t)dt} $. The well-known result that $ z/2$ is subordinate to $ f(z)$ in $ \left\vert z \right\vert < 1$ for every $ f$ belonging to $ K$ follows as a particular case from our results. We also improve certain results of Robinson regarding subordination by univalent functions. A sufficient condition for a univalent function to be convex of order $ \alpha $ is also given.


References [Enhancements On Off] (What's this?)

  • [1] T. BaşGöze, J. L. Frank and F. R. Keogh, On convex univalent functions, Canad. J. Math. 22 (1970), 123-127. MR 0257332 (41:1983)
  • [2] S. D. Bernardi, Special classes of subordinate functions, Duke Math. J. 33 (1966), 55-67. MR 0188420 (32:5858)
  • [3] F. R. Keogh, A strengthened form of the $ \tfrac{1}{4}$-theorem for starlike and univalent functions, Mathematical Essays Dedicated to A. J. MacIntyre, Ohio Univ. Press, Athens, Ohio (to appear). MR 0274736 (43:496)
  • [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. MR 0178131 (31:2389)
  • [5] G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295-334. MR 0100753 (20:7181)
  • [6] M. S. Robertson, Application of subordination principle to univalent functions, Pacific J. Math. 11 (1961), 315-324. MR 0124475 (23:A1787)
  • [7] -, An extremal problem for functions with positive real part, Michigan Math. J. 11 (1964). MR 0170002 (30:243)
  • [8] R. M. Robinson, Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35. MR 0019114 (8:370e)
  • [9] St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. MR 0328051 (48:6393)
  • [10] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970), 775-777. MR 0269827 (42:4722)
  • [11] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693. MR 0125214 (23:A2519)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C55

Retrieve articles in all journals with MSC: 30C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0603598-1
Keywords: Regular functions, univalent, starlike and convex functions, subordination, subordinating factor sequences, Hadamard product
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society