Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spirallike nonanalytic functions


Authors: Hassoon Al-Amiri and Petru T. Mocanu
Journal: Proc. Amer. Math. Soc. 82 (1981), 61-65
MSC: Primary 30C99; Secondary 30C45
DOI: https://doi.org/10.1090/S0002-9939-1981-0603602-0
MathSciNet review: 603602
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(z) = u(x,y) + i\upsilon (x,y)$ be a complex function defined in the unit disc $ U.f$ is said to belong to the class $ {C^1}(U)$ if the functions $ u(x,y)$ and $ \upsilon (x,y)$ have continuous first order partial derivatives in $ U$. We determine sufficient conditions for functions in the class $ {C^1}(U)$ to be univalent and to map $ U$ onto spirallike domains. These conditions are similar to those in the analytic case as given by Spaček and Rakhmanov.


References [Enhancements On Off] (What's this?)

  • [1] Petru T. Mocanu, Starlikeness and convexity for nonanalytic functions in the unit disc, Mathematica (Cluj) (to appear). MR 618032 (82i:30016)
  • [2] B. N. Rakhmanov, On the theory of schlicht functions, Dokl. Akad. Nauk SSSR 91 (1953), 729-732. (Russian) MR 0058711 (15:413f)
  • [3] -, On the theory of schlicht functions, Dokl. Akad. Nauk SSSR 97 (1954), 973-976. (Russian)
  • [4] L. Spaček, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat. 62 (1933), 12-19.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C99, 30C45

Retrieve articles in all journals with MSC: 30C99, 30C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0603602-0
Keywords: Univalent, starlike, spirallike, Jacobian, nonanalytic functions
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society