Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Minimal positive $ 2$-spanning sets of vectors

Author: Daniel A. Marcus
Journal: Proc. Amer. Math. Soc. 82 (1981), 165-172
MSC: Primary 15A03; Secondary 52A25
MathSciNet review: 609644
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({\upsilon _1}, \ldots ,{\upsilon _n})$ be a sequence in an $ m$-dimensional vector space $ V$ over an ordered field such that, for each $ i$, $ \left\{ {{\upsilon _j}:j \ne i} \right\}$ positively spans $ V$. It is shown that if $ ({\upsilon _1}, \ldots ,{\upsilon _n})$ is minimal with this property, then

$\displaystyle n \leqslant \left\{ {_{m(m + 1)/2 + 5}^{4m}} \right.\quad _{{\text{if}}\;m \geqslant 5}^{{\text{if}}\;m \leqslant 5}$

and all cases are determined in which $ n = 4m$, $ m \leqslant 4$. An application to convex polytopes is given.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A03, 52A25

Retrieve articles in all journals with MSC: 15A03, 52A25

Additional Information

PII: S 0002-9939(1981)0609644-3
Article copyright: © Copyright 1981 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia