Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal positive $ 2$-spanning sets of vectors

Author: Daniel A. Marcus
Journal: Proc. Amer. Math. Soc. 82 (1981), 165-172
MSC: Primary 15A03; Secondary 52A25
MathSciNet review: 609644
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({\upsilon _1}, \ldots ,{\upsilon _n})$ be a sequence in an $ m$-dimensional vector space $ V$ over an ordered field such that, for each $ i$, $ \left\{ {{\upsilon _j}:j \ne i} \right\}$ positively spans $ V$. It is shown that if $ ({\upsilon _1}, \ldots ,{\upsilon _n})$ is minimal with this property, then

$\displaystyle n \leqslant \left\{ {_{m(m + 1)/2 + 5}^{4m}} \right.\quad _{{\text{if}}\;m \geqslant 5}^{{\text{if}}\;m \leqslant 5}$

and all cases are determined in which $ n = 4m$, $ m \leqslant 4$. An application to convex polytopes is given.

References [Enhancements On Off] (What's this?)

  • [1] Michel Dalmazzo, Nombre d’arcs dans les graphes 𝑘-arc-fortement connexes minimaux, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A341–A344 (French, with English summary). MR 0463004
  • [2] Chandler Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954), 733–746. MR 0064011
  • [3] B. Grünbaum, Convex polytopes, Interscience, New York, 1967.
  • [4] Daniel A. Marcus, Gale diagrams of convex polytopes and positive spanning sets of vectors, Discrete Appl. Math. 9 (1984), no. 1, 47–67. MR 754428, 10.1016/0166-218X(84)90090-8
  • [5] -, Circulation polytopes associated with directed graphs (to appear).
  • [6] P. McMullen, Representations and diagrams (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A03, 52A25

Retrieve articles in all journals with MSC: 15A03, 52A25

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society