A REMARK ON AN EXAMPLE OF R. A. JOHNSON

GEORGE R. SELL

ABSTRACT. In [3] Johnson constructs an example of a second-order linear differential equation with almost periodic coefficients and with an almost automorphic behavior which we describe as Property J. In this paper we give a necessary and sufficient condition that a second order linear differential equation has Property J.

In [3] Johnson gives an example of a linear differential equation $x' = A(t)x$ where $x \in \mathbb{R}^2$,

$$A(t) = \begin{pmatrix} a(t) & b(t) \\ 0 & -a(t) \end{pmatrix}$$

for suitable almost periodic functions $a(t)$ and $b(t)$, and such that the induced flow in the projective bundle $PS \times H(A)$, where $H(A)$ is the hull of A, has precisely two minimal sets M_1 and M_2. Moreover, one set M_1 is an almost periodic minimal set and the other set M_2 is an almost automorphic extension of $H(A)$ that is not almost periodic. The existence of second-order linear differential equations with almost periodic coefficients and with this almost automorphic behavior in $PS \times H(A)$ was predicted in [2]. Since this phenomenon is important for the classification of such equations, we make the following definition:

A linear differential equation $x' = A(t)x$, $x \in \mathbb{R}^2$, is said to have Property J if $A(t)$ has almost periodic coefficients and there are two minimal sets M_1 and M_2 in the induced projective flow on $PS \times H(A)$ where M_1 is an almost periodic minimal set and M_2 is an almost automorphic extension of $H(A)$ that is not almost periodic.

The purpose of this note is to derive a necessary and sufficient condition for

$$x' = A(t)x, \quad x \in \mathbb{R}^2,$$

(2)

to have Property J. Before stating our result recall that the mean value of any almost periodic function $a(t)$ is given by

$$M(a) = \lim_{T \to \infty} \frac{1}{T} \int_0^T a(t) \, dt.$$

Theorem. A necessary and sufficient condition for equation (2) to have Property J is that there is an almost periodic Lyapunov-Perron transformation $x = P(t)y$ (i.e. P, P^{-1} and \hat{P} are almost periodic in t) such that $B = P^{-1}(AP - \hat{P})$ is upper

Received by the editors May 22, 1980.

1980 Mathematics Subject Classification. Primary 34C27.

Key words and phrases. Almost automorphic, almost periodic, linear differential equations.

1This research was supported in part by NSF Grant MCS 79-01998.

© 1981 American Mathematical Society

0002-9939/81/0000-0259/$01.75
triangular and almost periodic in t, say

$$B(t) = \begin{pmatrix} u(t) & v(t) \\ 0 & w(t) \end{pmatrix}$$

(3)

and the associated inhomogeneous equation

$$\xi' = (u - w)\xi + v$$

(4)

has a bounded solution that is not almost periodic in t. In this case, the following properties are valid:

(i) For some functions (u^*, v^*, w^*) in the hull $H(u, v, w)$ the equation $\xi' = (u^* - w^*)\xi + v^*$ has a bounded almost automorphic solution that is not almost periodic.

(ii) $M(u) = M(w) = \frac{1}{2} M(\text{tr} A)$.

(iii) The integral $\int_0^t [u(s) - w(s)] \, ds$ is unbounded in t.

(iv) At least one of the integrals $\int_0^t [u(s) - M(u)] \, ds$, $\int_0^t [w(s) - M(w)] \, ds$ is unbounded in t.

(v) $v(t) \not= 0$.

Proof. In order to prove this theorem we shall use the fact that if (2) has Property J and if $x = P(t)y$ is any almost periodic Lyapunov-Perron transformation then

$$y' = B(t)y$$

(5)

has Property J where $B = P^{-1}(AP - \hat{P})$, cf. [2].

Now assume that (2) has Property J. Then the almost periodic minimal set M_1 must be an N-fold cover of $H(A)$. (In fact, it is a 1-fold cover of $H(A)$.) The almost periodic Lyapunov-Perron transformation $x = P(t)y$ that reduces (2) to (5), where $B(t)$ is given by (3), is assured by [5, Theorem 9]. Next let (r, θ) denote the polar coordinates in the v-plane. Since $B(t)$ is upper triangular, the minimal set M_1 for (5) is generated by $\theta = 0$ (or \(\pi \)). The other minimal set M_2 must then be bounded away from 0 and \(\pi \). This means that if $\theta(t)$ is the θ-coordinate of the solution of (5) that originates in M_2, then $\cot \theta(t)$ is bounded in t. However, $\xi(t) = \cot \theta(t)$ is necessarily a solution of (4). It is bounded and not almost periodic. On the other hand, if (4) has a bounded solution that is not almost periodic, then by [4, Proposition 3.8] statement (i) is valid. Also the argument used by Johnson [3] shows that (5) has Property J where $B(t)$ is given by (3).

In order to prove statement (ii) we shall use the properties of the spectrum $\Sigma(A)$ and $\Sigma(B) = \{ M(u), M(w) \}$. Since [2] Property J implies that $\Sigma(A)$ consists of one point (which is necessarily \(\{ \frac{1}{2} M(\text{tr} A) \} \)) statement (ii) now follows. Since (4) has a bounded solution that is not almost periodic and since $M(u - w) = 0$, it follows from Favard’s Theorem [1, pp. 101, 107] that statement (iii) is valid. Statement (iv) now follows immediately from (ii) and (iii). If $v(t) \equiv 0$, then it follows that $\theta = \pi/2$ generates an almost periodic minimal set M_2 in the induced projective flow on $PS \times H(A)$. In other words there are three distinct minimal sets \(\{ M_1, M_2, M_3 \} \) in this flow. Consequently by [6, Theorem 8] the induced flow on $PS \times H(A)$ is distal. Since the restriction of this flow to M_2 is not distal, we have a contradiction. Q.E.D.
Remark. We cannot conclude, as in Johnson’s example, that $u = -w$ in (3). However if $x' = A(t)x$, $x \in \mathbb{R}^2$, is given with almost periodic coefficients, then for any almost periodic function $\alpha(t)$ the shifted equation

$$x' = (A(t) - \alpha(t)I)x$$

(6)

induces the same flow on $PS \times H(A)$, cf. [5, p. 29]. Furthermore, if $x = P(t)y$ transforms (2) to (5), then this will change (6) to $y' = (B(t) - \alpha(t)I)y$. Consequently if one chooses $\alpha(t) = \frac{1}{2}\text{tr} A(t)$, then the upper triangular matrix $(B - \alpha I)$ has the form (1).

References

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Current address: Department of Mathematics, University of Southern California, Los Angeles, California 90007