Abstract. It has been shown previously by the author that any completely nonunitary \(C_{11} \) contraction with finite defect indices is reflexive. In this note we show that this is true even without the completely nonunitary assumption.

Recall that a bounded linear operator \(T \) on a complex, separable Hilbert space is reflexive if \(\text{Alg Lat} \ T = \text{Alg} \ T \), where \(\text{Alg Lat} \ T \) and \(\text{Alg} \ T \) denote, respectively, the weakly closed algebra of operators which leave invariant every invariant subspace of \(T \) and the weakly closed algebra generated by \(T \) and \(I \). It was shown in [9] that every completely nonunitary (c.n.u.) \(C_{11} \) contraction with finite defect indices is reflexive and it was conjectured that the same is true for arbitrary \(C_{11} \) contractions. In this note we move one step closer to establish this conjecture by dropping the completely nonunitary assumption, i.e. we prove that any \(C_{11} \) contraction with finite defect indices (a direct sum of a unitary operator and a c.n.u. \(C_{11} \) contraction) is reflexive. Note that this is not entirely trivial since in general we do not know whether the direct sum of two reflexive operators is reflexive (cf. [3, Question 2]).

In the discussion below we will follow the notations established in [9]. We also need some more facts from [10]. Let \(T \) be a c.n.u. \(C_{11} \) contraction with defect indices \(d_T = d_{1n} \equiv n < \infty \). Then \(T \) can be considered as defined on \(H \equiv [H_n^2 \oplus \Delta L_n^2] \oplus \{ \Theta_T w \oplus \Delta w : w \in H_n^2 \} \) by \(T(f \oplus g) = P(e^{it} f \oplus e^{it} g) \) for \(f \oplus g \in H \), where \(\Theta_T \) denotes the characteristic function of \(T \), \(\Delta = (I - \Theta_T^* \Theta_T)^{1/2} \) and \(P \) denotes the (orthogonal) projection onto \(H \). Since \(\Theta_T \) is outer from both sides, there exists an outer scalar multiple \(\delta \) of \(\Theta_T \) (cf. [7, p. 217]). Let \(\Omega \) be a contractive analytic function such that \(\Omega \Theta_T = \Theta_T \Omega = \delta I \). Let \(U \) denote the operator of multiplication by \(e^{it} \) on \(\Delta_{\ast} L_n^2 \), where \(\Delta_{\ast} = (I - \Theta_T \Theta_T^*)^{1/2} \), and let \(X : H \to \Delta_{\ast} L_n^2 \), \(Y : \Delta_{\ast} L_n^2 \to H \) be the operators defined by \(X(f \oplus g) = -\Delta f + \Theta_T g \) for \(f \oplus g \in H \) and \(Yu = P(0 \oplus \Omega u) \) for \(u \in \Delta_{\ast} L_n^2 \). Then \(X \) and \(Y \) are quasi-affinities which intertwine \(T \) and \(U \) and satisfy \(XY = \delta(T) \) and \(XY = \delta(U) \) (cf. [10, Lemma 2.1]).

Any absolutely continuous unitary operator \(U_\alpha \) on \(K \) is, by the spectral theorem, unitarily equivalent to the operator of multiplication by \(e^{it} \) on \(L^2(E_1) \oplus \cdots \oplus L^2(E_k) \), where \(k \) may be infinite and \(E_1, \ldots, E_k \) are Borel subsets of the
unit circle C with $E_1 \supset E_2 \supset \cdots \supset E_k$. In particular, U is unitarily equivalent to the operator of multiplication by e^u on $L^2(F_1) \oplus \cdots \oplus L^2(F_k)$, where $C \supset F_1 \supset F_2 \supset \cdots \supset F_n$. Let $Z_1 : K \to L^2(F_1) \oplus \cdots \oplus L^2(E_k)$ and $Z_2 : \Delta E_n \to L^2(F_1) \oplus \cdots \oplus L^2(F_n)$ be the implementing unitary transformations.

Now we are ready to start. In the following lemmas we consider a C_{11} contraction with finite defect indices whose unitary part is absolutely continuous. We first find operators in its double commutant. Lemma 2 deals with the reflexivity and the double commutant property.

Lemma 1. Let $S = U_a \oplus T$, where U_a is an absolutely continuous unitary operator on K and T is a c.n.u. C_{11} contraction with finite defect indices on H. Then \(\{S\}'' = \{\psi(U_a) \oplus P[\phi, \psi]\} : \psi \in L^\infty, A \Theta_T = \Theta_T A_0 \) and $B \Theta_T + \psi \Delta = \Delta A_0$ for some bounded analytic function A_0.

Proof. For any $V \in \{S\}''$, $V = V_1 \oplus V_2$ where $V_1 \in \{U_a\}''$ and $V_2 \in \{T\}''$. Hence

\[
V_1 = \psi_1(U_a) \quad \text{and} \quad V_2 = \begin{bmatrix} A & 0 \\ B & \psi_2 \end{bmatrix},
\]

where $\psi_1, \psi_2 \in L^\infty$ and A, B satisfy $A \Theta_T = \Theta_T A_0$ and $B \Theta_T + \psi_2 \Delta = \Delta A_0$ for some bounded analytic function A_0 (cf. [9, Lemma 2]). Let $W = \delta(U_a)V_1 \oplus XV_2 Y \equiv W_1 \oplus W_2$. For any $u \in \Delta E_n$, we have

\[
W_2 u = XV_2 Y u = XP \begin{bmatrix} A & 0 \\ B & \psi_2 \end{bmatrix} \begin{bmatrix} 0 \\ \psi_2 u \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \psi_2 u \end{bmatrix} = \Delta_0 u + \Theta_T \psi_2 \Omega u = \delta \psi_2 u.
\]

This shows that $W_2 = (\delta \psi_2)(U)$. Hence $W = (\delta \psi_1)(U_a) \oplus (\delta \psi_2)(U)$. Next we show that $W \in \{U_a \oplus U\}''$. Since $V_1 \in \{U_a\}''$ and $V_2 \in \{T\}''$, we have only to check that (i) any operator $Q : K \to L^2$ intertwining U_a and U intertwines W_1 and W_2 and (ii) any operator $R : H \to K$ intertwining U and U_a intertwines W_2 and W_1.

To prove (i), note that $YQ : K \to H$ intertwines U_a and T. Since $V = V_1 \oplus V_2$ in $\{S\}''$, we have $YQV_1 = V_2 YQ$. Applying X from the left on both sides, we obtain $XYQV_1 = XV_2 YQ$ or $\delta(U)QV_1 = W_2 Q$. But $\delta(U)QV_1 = Q(\delta(U_a)V_1 = QW_1$. Hence Q intertwines W_1 and W_2, proving (i). (ii) can be proved in a similar fashion. Thus $W \in \{U_a \oplus U\}''$ as asserted and therefore $W = \xi(U_a \oplus U)$ for some $\xi \in L^\infty$. But we already have $W = (\delta \psi_1)(U_a) \oplus (\delta \psi_2)(U)$. It follows that $\xi = \delta \psi_1$ a.e. on E_1 and $\xi = \delta \psi_2$ a.e. on F_1, whence $\psi_1 = \psi_2$ a.e. on $E_1 \cap F_1$. Let ψ in L^∞ be such that $\psi = \psi_1$ a.e. on E_1 and $\psi = \psi_2$ a.e. on F_1. Then $V = \psi(U_a) \oplus P[\phi, \psi]$ as asserted.

For the converse, let $V = V_1 \oplus V_2 = \psi(U_a) \oplus P[\phi, \psi]$ for some $\psi \in L^\infty$. Again, we consider $W = \delta(U_a)V_1 \oplus XV_2 Y$. As before, it can be shown that $W = (\delta \psi)(U_a \oplus U) \in \{U_a \oplus U\}''$. Since $V_1 \in \{U_a\}''$ and $V_2 \in \{T\}''$ (cf. [9, Lemma 2]), to show that $V \in \{S\}''$ we have to check (i) any operator $Q : K \to H$ intertwining U_a and T intertwines V_1 and V_2 and (ii) any operator $R : H \to K$...
intertwining T and U_a intertwines V_2 and V_1. Here we only prove (i). Since $XQ: K \to \Delta_nL^2_n$ intertwines U_a and U and $W \in \{U_a \oplus U\}$, we have $XQ\delta(U_a)V_1 = XV_2YXQ$. It follows from the injectivity of X that $Q\delta(U_a)V_1 = V_2YQ$. But $V_2YXQ = V_2\delta(T)Q = V_2Q\delta(U_a)$ and hence we have $QV_1\delta(U_a) = V_2Q\delta(U_a)$. Since $\delta(U_a)$ has dense range, we conclude that $QV_1 = V_2Q$ as asserted. Similarly for (ii). Hence $V \in \{S\}^\nu$, completing the proof.

Lemma 2. Let $S = U_a \oplus T$ be as in Lemma 1.

1. If $E_1 \cup F_1 \neq C$ a.e., then $\text{Alg Lat} S = \text{Alg} S = \{S\}^\nu$.
2. If $E_1 \cup F_1 = C$ a.e., then $\text{Alg Lat} S = \text{Alg} S = \{\varphi(S): \varphi \in H^\infty\}$.

In particular, S is reflexive and $\{S\}^\nu = \text{Alg} S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

Proof. (1) In this case, it suffices to show that $\text{Alg Lat} S \subseteq \{S\}^\nu$ and $\{S\}^\nu \subseteq \text{Alg} S$. To prove the former, let $V \in \text{Alg Lat} S$. Then $V = V_1 \oplus V_2$, where $V_1 \in \text{Alg Lat} U_a = \text{Alg} U_a$ and $V_2 \in \text{Alg Lat} T = \text{Alg} T$ since U_a and T are both reflexive (cf. [6] and [9]). Hence

$$V_1 = \psi_1(U_a) \quad \text{and} \quad V_2 = \begin{bmatrix} A & 0 \\ B & \psi_2 \end{bmatrix},$$

where $\psi_1, \psi_2 \in L^\infty$ and A, B satisfy $A\Theta_T = \Theta_T A_0$ and $B\Theta_T + \psi_2\Delta = \Delta A_0$ for some A_0.

Consider the subspace

$$\mathcal{R} = \{Z_1^{-1}(\chi_{E_1}f \oplus \cdots \oplus \chi_{E_n}f) \oplus Z_2^{-1}(\chi_{F_1}f \oplus \cdots \oplus \chi_{F_n}f): f \in L^2\}$$

of $K \oplus \Delta_nL^2_n$. Note that \mathcal{R} is a (closed) invariant subspace for $U_a \oplus U$. Let $\mathcal{R} = (\delta(U_a) \oplus Y)\mathcal{R}$. Then \mathcal{R} is invariant for S and hence $\overline{V\mathcal{R}} \subseteq \mathcal{R}$. Applying $I \oplus X$ on both sides, we obtain $(I \oplus X)V\mathcal{R} \subseteq (I \oplus X)\mathcal{R}$. But

$$(I \oplus X)V\mathcal{R} = (I \oplus X)(V_1 \oplus V_2)(\delta(U_a) \oplus Y)\mathcal{R} = (\psi_1(U_a) \oplus \psi_2(U))\delta(U_a \oplus U)\mathcal{R},$$

where the last equality was proved in Lemma 1, and

$$(I \oplus X)\mathcal{R} = (I \oplus X)(\delta(U_a) \oplus Y)\mathcal{R} = \delta(U_a \oplus U)\mathcal{R}.$$

Since δ is an outer function, $\delta(U_a \oplus U)|\mathcal{R}$ is a quasi-affinity on \mathcal{R} (cf. [10, Lemma 2.3]). We conclude from above that $(\psi_1(U_a) \oplus \psi_2(U))\mathcal{R} \subseteq \mathcal{R}$. Hence for any $f \in L^2$, there exists $\psi \in L^2$ such that $\chi_{E_1}\psi f = \chi_{E_1}\psi$ a.e. and $\chi_{F_1}\psi f = \chi_{F_1}\psi$ a.e. In particular, for $f \equiv 1$ this implies that $\psi_1 = \psi$ a.e. on E_1 and $\psi_2 = \psi$ a.e. on F_1. Therefore, $V = \psi(U_a) \oplus P[\chi_{E_1}\psi]\in \{S\}^\nu$ by Lemma 1.

Next we show that $\{S\}^\nu \subseteq \text{Alg} S$. Let $V \in \{S\}^\nu$. By [5, Theorem 7.1], it suffices to show that $\text{Lat} S^{(\alpha)} \subseteq \text{Lat} V^{(\alpha)}$ for any $n > 1$, where

$$S^{(\alpha)} = \bigoplus_{n=1}^\infty S \quad \text{and} \quad V^{(\alpha)} = \bigoplus_{n=1}^\infty V.$$

Since $S^{(\alpha)}$ is an operator of the same type as S and $V^{(\alpha)} \in \{S^{(\alpha)}\}^\nu$, it is clear that we have only to check for $n = 1$, i.e. $\text{Lat} S \subseteq \text{Lat} V$. To prove this, let $\mathcal{R} \in \text{Lat} S$. By Lemma 1, $V = V_1 \oplus V_2 = (\psi(U_a) \oplus P[\chi_{E_1}\psi])$ for some $\psi \in L^\infty$ and A, B.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let $W = \delta(U_a)V_1 \otimes XV_2 Y$. As proved in Lemma 1, $W = (\delta(\psi)(U_a \otimes U))''$. Since by our assumption $E_1 \cup F_1 \neq C$ a.e., every invariant subspace for $U_a \otimes U$ is bi-invariant, i.e. invariant for any operator in $\{U_a \otimes U\}$". In particular, $\mathcal{H} \equiv (T \otimes X)\mathcal{H}$ is invariant for W, i.e. $W\mathcal{H} \subseteq \mathcal{H}$. Applying $\delta(U_a) \otimes Y$ on both sides, we obtain $(\delta(U_a) \otimes Y)W \mathcal{H} \subseteq (\delta(U_a) \otimes Y)\mathcal{H}$. But

$$
(\delta(U_a) \otimes Y)W \mathcal{H} = (\delta(U_a)V_1 \delta(U_a) \otimes YXV_2 YX)\mathcal{H}
$$

where the last equality follows from the fact that $\delta(U_a \otimes T)|\mathcal{H}$ is a quasi-affinity on \mathcal{H}. (This can be proved in the same fashion as [10, Lemma 2.3].) On the other hand, $(\delta(U_a) \otimes Y)\mathcal{H} = \delta(U_a \otimes T)\mathcal{H} = \mathcal{H}$. We conclude that $(V_1 \oplus V_2)\mathcal{H} \subseteq \mathcal{H}$ hence $\mathcal{H} \in \text{Lat} V$. This completes the proof of (1).

(2) As in (1), let

$$
V = \psi_1(U_a) \oplus P
$$

be an operator in Alg Lat S. This time we consider the subspace

$$
\mathcal{H} = \left\{ Z \left(\chi_{E_1} f \oplus \cdots \oplus \chi_{E_n} f \right) \oplus Z_2^{-1}(\chi_{F_1} f \oplus \cdots \oplus \chi_{F_n} f) : f \in H^2 \right\}
$$

of $K \oplus \Delta_2 L_2^2$. Since $E_1 \cup F_1 = C$ a.e., it is easy to check that \mathcal{H} is closed and invariant for $U_a \otimes U$. As in the first part of (1), we derive that for any $f \in H^2$ there exists $\varphi \in H^2$ such that $\chi_{E_1} \psi_1 f = \chi_{E_1} \varphi$ a.e. and $\chi_{F_1} \psi_2 f = \chi_{F_1} \varphi$ a.e. Hence for $f \equiv 1$, we have $\psi_1 = \varphi$ a.e. on E_1 and $\psi_2 = \varphi$ a.e. on F_1. Therefore $V = \varphi(U_a) \oplus P[\varphi, \psi_2]$. Using the fact that $\{P(0 \oplus g) : g \in \Delta L_2^n\}$ is dense in H (cf. [9, proof of Lemma 2]), we can easily show that $P[\varphi, \psi_2] = \varphi(T)$. Hence $V = \varphi(U_a \oplus T) = \varphi(S)$, completing the proof.

Now comes our main result.

Theorem 3. Any C_{11} contraction S with finite defect indices is reflexive. Moreover, $\{S\}'' = \text{Alg} S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

Proof. Let $S = U_a \oplus U_a \oplus T$ on $L \oplus K \oplus H$ be such that U_a and U_a are singular and absolutely continuous unitary operators, respectively, and T is a c.n.u. C_{11} contraction (cf. [7, p. 9] and [4]). We first show that $\text{Alg} U_a \oplus \text{Alg}(U_a \oplus T) = \text{Alg} S$. By [5, Theorem 7.1], this is equivalent to $\text{Lat} U_a^{(n)} \oplus \text{Lat}(U_a \oplus T)^{(n)} = \text{Lat} S^{(n)}$ for all $n > 1$. Since $S^{(n)} = U_a^{(n)} \oplus (U_a \oplus T)^{(n)}$ is of the same type as $S = U_a \oplus (U_a \oplus T)$, it suffices to check for $n = 1$, i.e. $\text{Lat} U_a \oplus \text{Lat}(U_a \oplus T) = \text{Lat} S$. Let $\mathcal{H} \in \text{Lat} S$. We can decompose the C_{11} contraction $S|\mathcal{H}$ as $S|\mathcal{H} = S_1 \oplus S_2 \oplus S_3$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$, where S_1 and S_2 are singular and absolutely continuous unitary operators and S_3 is a c.n.u. C_1 contraction. Note that \mathcal{H}_1 and $\mathcal{H}_2 \oplus \mathcal{H}_3$ are invariant for S. To complete the proof, we have to show that $\mathcal{H}_1 \subseteq L$ and $\mathcal{H}_2 \oplus \mathcal{H}_3 \subseteq K \oplus H$.

Let W be the operator of multiplication by $e^{i\theta}$ on $L_2^2 \oplus \Delta L_2^2$. Then $Z \equiv U_a \oplus U_a \oplus W$ is the minimal unitary dilation of S. It follows that Z is a unitary dilation of
$S_2 \oplus S_3$. There exists a reducing subspace \mathcal{E} for Z such that $Z|\mathcal{E}$ is the minimal unitary dilation of $S_2 \oplus S_3$ (cf. [7, p. 13]). Since S_2 is absolutely continuous and S_3 is c.n.u., $Z|\mathcal{E}$ must be absolutely continuous and continuous (cf. [7, p. 84]). On the other hand, we have $\text{Lat } U_\alpha \oplus \text{Lat}(U_\alpha \oplus W) = \text{Lat } Z$ (cf. [2, Lemma 1]). Hence we infer that $\mathcal{E} \subseteq K \oplus (L_2^2 \oplus \Delta L_2^2)$. Therefore $\mathcal{M}_2 \oplus \mathcal{M}_3 \subseteq \mathcal{E} \cap (L \oplus K \oplus H) \subseteq K \oplus H$. Along the same line, an even simpler argument can be applied to \mathcal{M}_1 and shows that $\mathcal{M}_1 \subseteq L$. Thus we have $\text{Alg } U_\alpha \oplus \text{Alg}(U_\alpha \oplus T) = \text{Alg } S$.

If $V \in \text{Alg Lat } S$, then $V = V_1 \oplus V_2$ where $V_1 \in \text{Alg Lat } U_\alpha = \text{Alg } U_\alpha$ and $V_2 \in \text{Alg Lat}(U_\alpha \oplus T) = \text{Alg}(U_\alpha \oplus T)$ by Lemma 2. From above we conclude that $V \in \text{Alg } S$ whence S is reflexive. Since $(U_\alpha)^{\prime\prime} = \text{Alg } U_\alpha$ (cf. [8]) and $(U_\alpha)^{\prime\prime} \oplus (U_\alpha \oplus T)^{\prime\prime} = \{S\}^{\prime\prime}$ (cf. [1, Proposition 1.3]), Lemma 2 implies that $\{S\}^{\prime\prime} = \text{Alg } S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA