Lie groups which admit flat left invariant metrics
Authors:
John R. Herring and John J. O’Sullivan
Journal:
Proc. Amer. Math. Soc. 82 (1981), 257-260
MSC:
Primary 53C20; Secondary 53C30
DOI:
https://doi.org/10.1090/S0002-9939-1981-0609662-5
MathSciNet review:
609662
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a Lie group which admits a flat left invariant metric. We show that any nonflat left invariant metric on
has conjugate points and we describe how some of the conjugate points arise.
- [1] J. Cheeger and D. G. Ebin, Comparison theorems in riemannian property, North-Holland, Amsterdam, 1975.
- [2] D. Gromoll and W. Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969), 75-90. MR 0247590 (40:854)
- [3] J. R. Herring and J. J. O'Sullivan, The Jacobi equation on Lie groups with left invariant metrics (to appear).
- [4] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 47-51. MR 0023591 (9:378d)
- [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. 1, Interscience, New York, 1962.
- [6] J. Milnor, Curvature of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329. MR 0425012 (54:12970)
- [7] J. J. O'Sullivan, Manifolds without conjugate points, Math. Ann. 210 (1974), 295-311. MR 0365413 (51:1665)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20, 53C30
Retrieve articles in all journals with MSC: 53C20, 53C30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1981-0609662-5
Keywords:
Lie group,
flat left invariant metric,
conjugate points
Article copyright:
© Copyright 1981
American Mathematical Society