Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A countable basis for $ \Sigma \sp{1}\sb{2}$ sets and recursion theory on $ \aleph \sb{1}$


Author: Wolfgang Maass
Journal: Proc. Amer. Math. Soc. 82 (1981), 267-270
MSC: Primary 03D60; Secondary 03D25, 03E15
DOI: https://doi.org/10.1090/S0002-9939-1981-0609664-9
MathSciNet review: 609664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Countably many $ {\aleph _1}$-recursively enumerable sets are constructed from which all the $ {\aleph _1}$-recursively enumerable sets can be generated by using countable union and countable intersection. This implies under $ V = L$ that there exists as well a countable basis for $ \sum _n^1$ sets of reals, $ n \geqslant 2$. Further under $ V = L$ the lattice $ \mathcal{E}*({\aleph _1})$ of $ {\aleph _1}$-recursively enumerable sets modulo countable sets has only $ {\aleph _1}$ many automorphisms.


References [Enhancements On Off] (What's this?)

  • [1] K. Kunen, Combinatorics, Handbook of Mathematical Logic (J. Barwise, Ed.), North-Holland, Amsterdam, 1977. MR 0457132 (56:15351)
  • [2] M. Lerman, Lattices of $ \alpha $-recursively enumerable sets, Proc. Second Sympos. Generalized Recursion Theory (Oslo, 1977), North-Holland, Amsterdam, 1978. MR 516937 (80e:03054)
  • [3] R. Mansfield, The solution to one of Ulam's problems concerning analytic sets. II, Proc. Amer. Math. Soc. 26 (1970), 539-540. MR 0279265 (43:4988)
  • [4] R. I. Soare, Automorphisms of the lattice of recursively enumerable sets. I, Maximal sets, Ann. of Math. (2) 100 (1974), 80-120. MR 0360235 (50:12685)
  • [5] -, Recursively enumerable sets and degrees, Bull. Amer. Math. Soc. 84 (1978), 1149-1181. MR 508451 (81g:03050)
  • [6] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56. MR 0265151 (42:64)
  • [7] K. Sutner, Automorphisms of $ \alpha $-recursively enumerable sets, Diplomarbeit an der Universität München, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03D60, 03D25, 03E15

Retrieve articles in all journals with MSC: 03D60, 03D25, 03E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0609664-9
Keywords: $ \alpha $-recursively enumerable sets, automorphisms of r.e. sets, countable unions and intersections of $ \sum _2^1$-sets
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society