Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A partition theorem for perfect sets


Author: Andreas Blass
Journal: Proc. Amer. Math. Soc. 82 (1981), 271-277
MSC: Primary 03E15; Secondary 03E05, 04A20, 54H05
DOI: https://doi.org/10.1090/S0002-9939-1981-0609665-0
MathSciNet review: 609665
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a perfect subset of the real line, and let the $ n$-element subsets of $ P$ be partitioned into finitely many classes, each open (or just Borel) in the natural topology on the collection of such subsets. Then $ P$ has a perfect subset whose $ n$-element subsets lie in at most $ (n - 1)!$ of the classes.


References [Enhancements On Off] (What's this?)

  • [1] J. Burgess, A selector principle for $ \sum _1^1$ equivalence relations, Michigan Math. J. 24 (1977), 65-76. MR 0453530 (56:11792)
  • [2] F. M. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966), 75-87. MR 0188381 (32:5820)
  • [3] F. Galvin, Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968), 660; Erratum 16 (1969), 1095.
  • [4] F. Galvin and S. Shelah, Some counterexamples in the partition calculus, J. Combinatorial Theory Ser. A 15 (1973), 167-174. MR 0329900 (48:8240)
  • [5] J. D. Halpern and H. Läuchli, A partition theorem, Trans. Amer. Math. Soc. 124 (1966), 360-367. MR 0200172 (34:71)
  • [6] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147. MR 0173645 (30:3855)
  • [7] -, Algebraic independence and measure, Fund. Math. 61 (1967), 165-169. MR 0224762 (37:361)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E15, 03E05, 04A20, 54H05

Retrieve articles in all journals with MSC: 03E15, 03E05, 04A20, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0609665-0
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society