A PROOF OF THE BURKHOLDER THEOREM
FOR MARTINGALE TRANSFORMS

T. SHINTANI

Abstract. If \(g \) is the transform of an \(L^1 \)-bounded martingale \(f \) under a predictable sequence \(v \) satisfying \(\sup_n |v_n| < \infty \) almost everywhere, then a proof of the convergence of \(g \) is given using an approximation of \(f \) by a martingale of bounded variation.

Let \((\Omega, A, P)\) be a probability space, and \(M^1 \) the space of \(L^1 \)-bounded martingales \(f = (f_1, f_2, \ldots) \) relative to a fixed increasing sequence \(A_1, A_2, \ldots \) of sub-\(\sigma \)-fields of \(A \). Equipped with the norm \(\|f\|_1 = \sup_n \|f_n\|_1 \), \(M^1 \) is a Banach space.

A martingale \(f \), with \(f_n = \sum_{k=1}^n d_k, n > 1 \), \((d_k = f_k - f_{k-1}, d_1 = f_1)\) is of bounded variation if \(\sum_{k=1}^\infty |d_k(\omega)| < \infty \) for almost all \(\omega \).

Let \(BV = \{f \in M^1 : f \text{ is of bounded variation}\} \). Then, \(BV \) is dense in \(M^1 \) in \(M^1 \)-norm (Theorem 1 of [3, p. 166]).

The following basic convergence theorem is well known:

Theorem (Theorem 1 of [1]). Let \(f = (f_1, f_2, \ldots) \) be an \(L^1 \)-bounded martingale and let \(v = (v_1, v_2, \ldots) \) be a predictable sequence of random variables: \(v_k : \Omega \to \mathbb{R} \) is \(A_{k-1} \)-measurable, \(k > 1 \), such that \(\sup_n |v_n| < \infty \) a.e. Then the martingale transform \(g = (g_1, g_2, \ldots) \), defined by \(g_n = \sum_{k=1}^n v_k d_k \), converges a.e.

What is not so transparent is the mechanism of convergence for martingale transforms, i.e., Burkholder transforms. Here is a proof:

Proof. By a result of Burkholder and Shintani (Theorem 1 of [3]), for \(f \) in \(M^1 \) and arbitrary \(\epsilon > 0 \) there is a martingale \(f^{(\epsilon)} \) in \(BV \) such that \(\|f - f^{(\epsilon)}\|_1 < \epsilon^2 \). Let

\[
g_n^{(\epsilon)}(\omega) = \sum_{k=1}^n v_k d_k^{(\epsilon)}, \quad d_k^{(\epsilon)} = f_k^{(\epsilon)} - f_{k-1}^{(\epsilon)}, \quad k > 1.
\]

Then, for almost all \(\omega \in \Omega \),

\[
|g_n^{(\epsilon)}(\omega)| \leq \sum_{k=1}^n |v_k(\omega)| \cdot |d_k^{(\epsilon)}(\omega)| < \sup_n |v_n(\omega)| \cdot \sum_{k=1}^\infty |d_k^{(\epsilon)}(\omega)| < \infty.
\]

Received by the editors September 1, 1979 and, in revised form, June 23, 1980.

Key words and phrases. Martingale, almost everywhere convergence, bounded variation, approximation, Burkholder transform, Banach space.

© 1981 American Mathematical Society
0002-9939/81/0000-0273/$01.50

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
This means that the sequence \(\{ g^{(e)}_{n}(\omega), n > 1 \} \) converges absolutely for almost all \(\omega \). So, \(P(\limsup_{m,n \to \infty} |g^{(e)}_m - g^{(e)}_n| > \varepsilon) = 0 \). Then

\[
P(\limsup_{m,n \to \infty} |g_m - g_n| > 3\varepsilon) = P(\limsup_{m,n \to \infty} (|g_m - g^{(e)}_m| + |g^{(e)}_n - g_n| + |g^{(e)}_m - g^{(e)}_n|) > 3\varepsilon)
\]

\[
< P(\limsup_{m,n \to \infty} |g_m - g^{(e)}_m| > \varepsilon) + P(\limsup_{m,n \to \infty} |g^{(e)}_n - g_n| > \varepsilon) + P(\limsup_{m,n \to \infty} |g^{(e)}_m - g^{(e)}_n| > \varepsilon)
\]

\[
= 2 \cdot P(\inf_{m > 1} (\sup_{m < n} |g_n - g^{(e)}_n|) > \varepsilon)
\]

\[
< 2 \cdot P(\sup_n |g_n - g^{(e)}_n| > \varepsilon).
\]

Now, by the weak \(L^1 \)-inequality of Burkholder, for each constant \(c > 0 \) there is a universal constant \(C > 0 \) such that if \(|v| < c \) uniformly then

\[
P(\sup_n |g_n| > \lambda) < C \cdot \lambda^{-1} \cdot \|f\|_1
\]

for \(f \in M^1 \) and all \(\lambda > 0 \). For a proof, see [2].

Therefore

\[
P(\limsup_{m,n \to \infty} |g_m - g_n| > 3\varepsilon) < 2C \cdot \varepsilon^{-1} \cdot \|f - f^{(e)}\|_1
\]

\[
< 2C \cdot \varepsilon \quad \text{for all } \varepsilon > 0.
\]

Since \(\sup_n |v_n| < \infty \) a.e., this means that \(\{ g_n(\omega), n > 1 \} \) is a Cauchy sequence for almost all \(\omega \). Since the state space \(X = \mathbb{R} \) is complete, \(\lim_{n \to \infty} g_n(\omega) \) exists for almost all \(\omega \) and belongs to \(X \). This implies that \(g \) converges a.e. and the theorem is proved.

REFERENCES

Department of Mathematics, Tomakomai Technical College, Tomakomai, Hokkaido, Japan

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use