Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every finite abelian group is the Brauer group of a ring


Author: T. J. Ford
Journal: Proc. Amer. Math. Soc. 82 (1981), 315-321
MSC: Primary 13A20
DOI: https://doi.org/10.1090/S0002-9939-1981-0612710-X
MathSciNet review: 612710
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an arbitrary finite abelian group $ G$ a ring $ R$ is constructed using cohomological techniques from algebraic geometry whose Brauer group is $ G$. If $ G$ is a cyclic group, then $ R$ can be taken to be a three-dimensional noetherian integral domain. If $ G$ is not a cyclic group the ring $ R$ is a three-dimensional noetherian ring. At the expense of raising the dimension of $ R$, $ R$ can be chosen to be a domain. We also calculate $ B(R[x,1/x])$ for $ R$ a commutative noetherian regular ring containing a field of characteristic zero.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 0121392 (22:12130)
  • [2] L. N. Childs, Mayer-Vietoris sequences and Brauer groups of nonnormal domains, Trans. Amer. Math. Soc. 196 (1974), 51-67. MR 0344240 (49:8979)
  • [3] P. Deligne et al., SGA41/2, Cohomology étale, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977. MR 0463174 (57:3132)
  • [4] F. R. DeMeyer, The Brauer group of a ring modulo an ideal, Rocky Mountain J. Math. 6 (1976), 191-198. MR 0399066 (53:2917)
  • [5] -, The Brauer group of affine curves, Brauer Groups (Evanston 1975), Lecture Notes in Math., vol 549, Springer-Verlag, Berlin, 1976, pp. 16-24. MR 0437537 (55:10461)
  • [6] O. Gabber, Some theorems on Azumaya algebras, Ph.D. thesis, Harvard University, 1978.
  • [7] A. Grothendieck, Le groupe de Brauer. I, II, III, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam; Masson, Paris, 1968, pp. 46-188. MR 0244269 (39:5586a)
  • [8] -, SGA1, Revêtements étales et groupe fondamental, Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin and New York, 1971.
  • [9] A. Grothendieck, M. Artin and J. L. Verdier, SGA4, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., vol. 269, 270, 305, Springer-Verlag, Berlin and New York, 1972-1973.
  • [10] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • [11] M. A. Knus and M. Ojanguran, A Mayer-Vietoris sequence for the Brauer group, J. Pure Appl. Algebra 5 (1974), 345-360. MR 0369339 (51:5572)
  • [12] A. R. Magid, Brauer groups of linear algebraic groups with characters, Proc. Amer. Math. Soc. 71 (1978), 164-168. MR 0485816 (58:5619)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A20

Retrieve articles in all journals with MSC: 13A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0612710-X
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society