Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Maximal separable intermediate fields of large codegree

Author: Nickolas Heerema
Journal: Proc. Amer. Math. Soc. 82 (1981), 351-354
MSC: Primary 12F15; Secondary 12F20
MathSciNet review: 612717
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a function field in $ n(n > 0)$ variables over $ {k_0}$ a field having characteristic $ p \ne 0$. An intermediate field $ s$ is maximal separable if $ s/{k_0}$ is separable and $ s$ is not properly contained in any subfield of $ k$ separable over $ {k_0}$. The following result is proved. If $ n = 1$ the set $ \Delta = \{ [k:s]\vert s$ maximal separable} is bounded if and only if the algebraic closure $ {\bar k_0}$ of $ {k_0}$ in $ k$ is separable over $ {k_0}$. If $ n \geqslant 1$ and $ \Delta $ is bounded then $ {\bar k_0}/{k_0}$ is separable. An upper bound for $ \Delta $ is obtained for the case $ n = 1$ and $ {\bar k_0}/{k_0}$ separable.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F15, 12F20

Retrieve articles in all journals with MSC: 12F15, 12F20

Additional Information

PII: S 0002-9939(1981)0612717-2
Article copyright: © Copyright 1981 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia