Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Maximal separable intermediate fields of large codegree

Author: Nickolas Heerema
Journal: Proc. Amer. Math. Soc. 82 (1981), 351-354
MSC: Primary 12F15; Secondary 12F20
MathSciNet review: 612717
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a function field in $ n(n > 0)$ variables over $ {k_0}$ a field having characteristic $ p \ne 0$. An intermediate field $ s$ is maximal separable if $ s/{k_0}$ is separable and $ s$ is not properly contained in any subfield of $ k$ separable over $ {k_0}$. The following result is proved. If $ n = 1$ the set $ \Delta = \{ [k:s]\vert s$ maximal separable} is bounded if and only if the algebraic closure $ {\bar k_0}$ of $ {k_0}$ in $ k$ is separable over $ {k_0}$. If $ n \geqslant 1$ and $ \Delta $ is bounded then $ {\bar k_0}/{k_0}$ is separable. An upper bound for $ \Delta $ is obtained for the case $ n = 1$ and $ {\bar k_0}/{k_0}$ separable.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F15, 12F20

Retrieve articles in all journals with MSC: 12F15, 12F20

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society