THE SEPARATION PRINCIPLE
FOR IMPULSE CONTROL PROBLEMS

JOSÉ-LUIS MENALDI

ABSTRACT. In this paper, one shows that the combined problem of optimal impulse control and filtering, for a stochastic linear dynamic system observed via a noisy linear channel, can be reduced to two independent problems of impulse control and filtering, respectively.

1. Introduction. W. M. Wonham [8] showed that the combined problem of optimal control and filtering, for a stochastic linear dynamic system observed via a noisy linear channel, can be reduced to two independent problems of stochastic control and filtering, respectively. This result was improved by M. H. A. Davis [3] using the concept of Girsanov solutions of stochastic differential equations.

A. Bensoussan and J. L. Lions [1] proved that the same separation principle holds for stopping time problems.

In all cases, a nondegeneracy on the observation matrix is imposed. This assumption would rarely be met in practice.

In [5], we showed that the separation principle for stopping time problems holds even under degeneracy.

Let us also mention the work of J. Szpirglas and G. Mazziotto [7].

The object of this article is to prove that the combined problem of optimal impulse control and filtering, for a stochastic linear dynamic system observed via a noisy linear channel, can be reduced to two independent problems of impulse control and filtering, respectively. In general, the optimal impulse control depends parametrically on the intensity of channel noise; the result means, however, that channel noise plays qualitatively the same role as dynamic disturbances in determination of the feedback law.

2. Statement of the problem. Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(T\) be a positive constant.

Given matrices \(F(t), G(t), H(t), 0 < t < T\), such that

\[
\begin{align*}
F(\cdot), G(\cdot) & \in C([0, T]; \mathbb{R}^n \times \mathbb{R}^n), \\
H(\cdot) & \in C([0, T]; \mathbb{R}^n \times \mathbb{R}^p),
\end{align*}
\]

(2.1)

Received by the editors November 20, 1979 and, in revised form, June 20, 1980.

Key words and phrases. Separation principle, filtering problems, quasi-variational inequalities, elliptic-parabolic operators, impulse control problems, degenerate diffusions.
we denote by $y^o(t)$ the solution of the linear Itô equation
\[
\begin{align*}
\frac{dy^o(t)}{dt} &= F(t)y^o(t) + G(t)dw(t), & 0 < t < T, \\
y^o(0) &= x + \xi, & x \in \mathbb{R}^N,
\end{align*}
\] (2.2)

where $w(t)$ is a standard Wiener process in \mathbb{R}^N and ξ is a Gaussian random variable with vanishing expectation and covariance matrix P_0; ξ is independent of the process $w(t), 0 < t < T$.

The current state of the system without control at the instant t is $y^o(t)$, but we cannot observe the system. The information is provided by the channel output $z^o(t)$ defined by
\[
\begin{align*}
\frac{dz^o(t)}{dt} &= H(t)y^o(t) + d\eta(t), & 0 < t < T, \\
z^o(0) &= 0,
\end{align*}
\] (2.3)

where $\eta(t)$ is a Wiener process in \mathbb{R}^P independent of $w(t)$, with vanishing expectation and covariance matrix $R(t)$ such that
\[
\begin{align*}
R(\cdot) &\in C([0, T]; \mathbb{R}^P \times \mathbb{R}^P), \\
R(t) &> rI, & r > 0 \quad \forall t \in [0, T].
\end{align*}
\] (2.4)

We denote by \mathcal{Z}^o, $0 < t < T$, the nondecreasing right continuous family of completed σ-algebras generating by the process $z^o(t)$.

An admissible impulse control v is a set $\{\theta_1, \xi_1, \ldots ; \theta_n, \xi_n, \ldots \}$ where $\{\theta_i\}_{i=1}^{\infty}$ is an increasing sequence of stopping times with respect to \mathcal{Z}^o convergent to T ($0 < \theta_1 < \theta_1 + \ldots < T, \{\theta_i, \xi_i\} \in \mathcal{Z}^o, \theta_i \to T$) and $\{\xi_i\}_{i=1}^{\infty}$ is a sequence of random variables taking values in \mathbb{R}^N_+, adapted with respect to $\{\theta_i\}_{i=1}^{\infty}$ ($\xi_i: \Omega \to \mathbb{R}^N, \xi_i > 0$, \mathcal{Z}^o-measurable).

Now we define the sequence of diffusion processes with jumps, $\{y^n(t)\}_{n=1}^{\infty}$, $y^n(t) = y^n(t, v), t \in [0, T], \forall$ any admissible impulse control, by the stochastic equation
\[
\begin{align*}
\frac{dy^n(t)}{dt} &= F(t)y^n(t) + G(t)dw(t), & \theta_n < t < T, \\
y^n(t) &= y^{n-1}(t) + 1_{\theta_n = \xi_n}, & 0 < t < \theta_n.
\end{align*}
\] (2.5)

We have
\[
y^n(t) = y'^i(t) \quad \text{on } [0, \theta_n], \forall i > n. \tag{2.6}
\]

Defining
\[
y(t, v) = \lim_{n \to \infty} y^n(t), & 0 < t < T, \tag{2.7}
\]
the process $y(t, v)$, which is right continuous with left limits existing, satisfies the following stochastic equation:
\[
\begin{align*}
\frac{dy(t)}{dt} &= F(t)y(t)dt + G(t)dw(t) + \sum_{i=1}^{\infty} \xi_i \delta(t - \theta_i)dt, & 0 < t < T, \\
y(0) &= x + \xi,
\end{align*}
\] (2.8)

where $\delta(t)$ is the Dirac measure.

\footnote{$1_{\theta_n = \xi}$ denotes the characteristic function of the set $\{\theta_n = \xi\}$.}
The current state of the system with impulse control \(v \) at the instant \(t \) is represented by \(y(t) \), and
\[
\dot{y}(t) = E\{ y(t) / \mathcal{F}_t \}
\]
is the information state process; we also have \(\dot{y}(0) = x \).

We call the impulse process \(\beta(t) \) the solution of the equation
\[
\begin{align*}
d\beta(t) &= F(t)\beta(t)dt + \sum_{i=1}^{\infty} \xi_i \delta(t - \theta_i)dt, \quad 0 < t < T, \\
\beta(0) &= 0.
\end{align*}
\]
Clearly, \(\beta(t) = \beta(t, v) \) is built in the same way as \(y(t) \) by iteration. Notice, the process \(\beta(t) \) is right continuous with left limits and adapted to the observation \(\mathcal{F}_t \).

Thus, according to the equation (2.2), (2.8), (2.10) we deduce from (2.9)
\[
\dot{y}(t) = E\{ y^o(t) / \mathcal{F}_t \} + \beta(t).
\]

We introduce the process \(e(t) \), called the estimation error, given by
\[
e(t) = y^o(t) - E\{ y^o(t) / \mathcal{F}_t \}, \quad 0 < t < T,
\]
which is independent of \(\mathcal{F}_t \) and verifies
\[
e(t) = y(t) - \dot{y}(t), \quad 0 < t < T.
\]

We also define \(\hat{\eta}(t) \) by
\[
\begin{align*}
d\hat{\eta}(t) &= R^{-1/2}(t)H(t)\epsilon(t)dt + R^{-1/2}(t)d\eta(t), \quad 0 < t < T, \\
\hat{\eta}(0) &= 0
\end{align*}
\]
which is a standard Wiener process and satisfies the martingale property
\[
\hat{\eta}(t) = E\{ \hat{\eta}(s) / \mathcal{F}_t \}, \quad 0 < t < s < T.
\]

Then, the assertions (2.10), (2.11) and the R. E. Kalman-R. S. Bucy [4] theory show that \(\dot{y}(t) \) is the solution of the following stochastic equation
\[
\begin{align*}
d\dot{y}(t) &= F(t)\dot{y}(t)dt + \sum_{i=1}^{\infty} \xi_i \delta(t - \theta_i)dt, \quad 0 < t < T, \\
\dot{y}(0) &= x,
\end{align*}
\]
where the matrix \(P(t) \) is the unique solution of the Riccati equation
\[
\begin{align*}
P'(t) &= FP + PF^* - PH^*R^{-1}HP + GG^*, \quad 0 < t < T, \\
P(0) &= P_0.
\end{align*}
\]

We also deduce that the estimation error \(\epsilon(t) \) is the unique solution of the Itô equation
\[
\begin{align*}
de(t) &= (F - PH^*R^{-1}H)\epsilon(t)dt - PH^*R^{-1}d\eta + Gd\omega, \quad 0 < t < T, \\
\epsilon(0) &= \xi.
\end{align*}
\]

\footnote{The prime (') means time derivative and the star (*) denotes the transpose.}
3. Optimal impulse control. Let $f(x, t)$ be a nonnegative, continuous and bounded function on $\mathbb{R}^N \times [0, T]$ taking values in \mathbb{R},
\[
f \in C_b\left(\mathbb{R}^N \times [0, T]\right), \quad f(x, t) > 0 \quad \forall x \in \mathbb{R}^N, \quad t \in [0, T],
\]
and let $k(\xi)$ be a continuous function from \mathbb{R}^N into \mathbb{R} such that
\[
k \in C\left(\mathbb{R}^N\right), \quad k(\xi) > k_0 > 0, \quad k(\xi) \to \infty \quad \text{if} \quad |\xi| \to \infty.
\]
Now, for any admissible impulse control $\nu = \{\theta_1, \xi_1; \ldots; \theta_n, \xi_n; \ldots\}$ and $x \in \mathbb{R}^N$ we set
\[
J_x(\nu) = \mathbb{E}\left\{ \int_0^T f(y(t), t) e^{-\alpha t} dt + \sum_{i=1}^{\infty} k(\xi_i) 1_{\Delta t < T} e^{-\alpha \Delta t} \right\},
\]
where α is a real constant.

We remark that any admissible impulse control ν is adapted to the information state $\dot{y}(t)$ and not to the current state $y(t)$.

Our purpose is to characterize the optimal cost
\[
u_0(x) = \inf\{J_x(\nu)/\nu \text{ admissible impulse control}\}
\]
and to obtain a separation principle for an eventual optimal admissible impulse control.

Let M be the operator
\[
[M\phi](x) = \inf\{k(\xi) + \phi(x + \xi)/\xi \in \mathbb{R}^N\}
\]
and $u(x, t)$ be an arbitrary function satisfying
\[
u \in C_b\left(\mathbb{R}^N \times [0, T]\right), \quad u < Mu \quad \text{in} \quad \mathbb{R}^N \times [0, T].
\]
The admissible impulse control $\nu = \nu_x$ associated to the function u is defined as follows. First we select a function $\xi(x, t)$ verifying
\[
\left\{
\begin{array}{c}
\xi: \mathbb{R}^N \times [0, T] \to \mathbb{R}^N, \text{Borel measurable and bounded such that} \\
[Mu](x, t) = k(\xi(x, t)) + u(x + \xi(x, t), t) \quad \forall x \in \mathbb{R}^N, t \in [0, T].
\end{array}
\right.
\]
Next, define $\tilde{\theta}^o = 0$ and $\tilde{\phi}^o(t)$ by
\[
\left\{
\begin{array}{c}
d\tilde{\phi}^o(t) = F(t)\tilde{\phi}^o(t)dt + P(t)H^*(t)R^{-1/2}(t)d\tilde{w}(t), \quad 0 < t < T, \\
d\tilde{\phi}^o(0) = x.
\end{array}
\right.
\]
We define $\nu = \{\theta_1, \xi_1; \ldots; \theta_n, \xi_n; \ldots\}$ by the formulas
\[
\tilde{\theta}^{i+1} = \inf\{t \in [\tilde{\theta}^i, T]/u(\tilde{\phi}^i(t), t) = [Mu](\tilde{\phi}^i(t), t)\}, \quad i = 0, 1, \ldots,
\]
\[
\left\{
\begin{array}{c}
\theta_i = \begin{cases}
\tilde{\theta}^i & \text{if} \quad \tilde{\theta}^i < T, i = 1, 2, \ldots, \\
T & \text{otherwise,}
\end{cases} \\
\xi_i = \xi(\tilde{\phi}^{i-1}(\theta_i), \theta_i), \quad i = 1, 2, \ldots.
\end{array}
\right.
\]
We define $\tilde{\phi}^i(t) = F(t)\tilde{\phi}^i(t)dt + P(t)H^*(t)R^{-1/2}(t)d\tilde{w}(t)$,
\[
\theta_i < t < T, \quad i = 1, 2, \ldots,
\]
\[
\tilde{\phi}^i(t) = \tilde{\phi}^{i-1}(t) + 1_{t = \theta_i}\xi_i, \quad 0 < t < \theta_i.
\]
Clearly, if there exists a function \(u \) verifying (3.6) whose associated admissible impulse control \(v \) is optimal, the separation principle is established. Notice, the fact that \(v \) is optimal shows automatically that \(\theta_i \to T \). Moreover, \(\theta_i = T \) for all \(i \geq n(\omega) \) almost surely.

Let \(A(t) \) be the second order differential operator corresponding to the Itô equation (3.8),

\[
A(t) = - \sum_{i,j=1}^{N} a_{ij}(t) \frac{\partial^2}{\partial x_i \partial x_j} - \sum_{i=1}^{N} (F(t)x)_i \frac{\partial}{\partial x_i} + \alpha, \tag{3.13}
\]

where

\[
[a_{ij}(t)]_{ij} = \frac{1}{2} P(t) H^*(t) R^{-1}(t) H(t) P(t). \tag{3.14}
\]

We remark that \(A(t) \) is usually degenerate. W. M. Wonham [8], M. H. A. Davis [3], A. Bensoussan and J. L. Lions [1] supposed that the matrices \(P(t) \) and \(H(t) \) are nonsingular.

We set

\[
l(x, t) = E\{f(x + e(t), t)\} \quad \forall x \in \mathbb{R}^N, t \in [0, T], \tag{3.15}
\]

where \(e(t) \) is given by (2.18).

We introduce the following quasi-variational inequality. Find \(u(x, t) \) such that

\[
\begin{cases}
 u \in C_b(\mathbb{R}^N \times [0, T]), & u(x, T) = 0 \forall x \in \mathbb{R}^N, \\
 -\frac{\partial u}{\partial t} + A(t)u < l & \text{in } \mathcal{D}'(\mathbb{R}^N \times [0, T]), u < Mu & \text{in } \mathbb{R}^N \times [0, T], \\
 -\frac{\partial u}{\partial t} + A(t)u = l & \text{in } \mathcal{D}'([u \leq Mu]).
\end{cases} \tag{3.16}
\]

We have the

Separation Principle Theorem. Let the assumptions (2.1), (2.4), (3.1), (3.2) hold. Then there exists one and only one solution \(u \) of the quasi-variational inequality (3.16). Moreover the admissible impulse control \(v \) defined by (3.7)–(3.12), associated to the function \(u \) given by (3.16), is optimal [i.e., \(u_0(x) = J_x(v_x) \)].

Proof. First, using a general result in [6] applied to a degenerate operator \(-\partial/\partial t + A(t)\), we deduce that there exists a solution of problem (3.16).

In order to prove the uniqueness, we denote by \(z(s) = z_{x_0}(s, \omega), 0 < t < s < T, x \in \mathbb{R}^N, \omega \in \Omega, \) the diffusion associated to the operator \(-\partial/\partial t + A(t)\), i.e.,

\[
\begin{cases}
 dz(s) = F(s)z(s)ds + P(s)H^*(s)R^{-1/2}(s)d\mathcal{W}(s), & t < s < T, \\
 z(t) = x.
\end{cases} \tag{3.17}
\]

Now let \(u(x, t) \) be an arbitrary solution of (3.16). We set \(\theta = \theta_x(\omega), 0 < t < T, x \in \mathbb{R}^N, \omega \in \Omega, \) the first exit time of process \(z(s) \) from \([u \leq Mu]\), i.e.,

\[
\theta = \inf\{ s \in [t, T] / u(z(s), s) = [Mu](z(s), s) \}. \tag{3.18}
\]
Then, using the fact that the coefficients of the second order terms of operator $A(t)$ are constant and that $u(x, t)$ is continuous, we establish by convolution techniques the following Itô formulas for each $x \in \mathbb{R}^N$, $t \in [0, T]$:

$$u(x, t) \leq E \left\{ \int_t^{T \land \tau} l(z(s), s)e^{-as}ds + u(z(T \land \tau), T \land \tau)e^{-a(T \land \tau)} \right\}$$

$\forall \tau \geq t$ stopping time, \hspace{1cm} (3.19)

$$u(x, t) = E \left\{ \int_\theta^\tau l(z(s), s)e^{-as}ds + u(z(\theta), \theta)e^{-a\theta} \right\}.$$ \hspace{1cm} (3.20)

Therefore, as in [6], the properties (3.19), (3.20) imply the uniqueness of the solution u.

Next, from (3.7)-(3.12) and (3.20), we deduce

$$u(x, 0) = E \left\{ \int_0^T l(\hat{y}(t), t)e^{-at}dt + \sum_{i=1}^{\infty} k(\xi_i)1_{\xi_i \leq \tau}e^{-a\tau} \right\},$$ \hspace{1cm} (3.21)

and from (2.13), (3.15) we have

$$E \left\{ \int_0^T l(\hat{y}(t), t)e^{-at}dt \right\} = E \left\{ \int_0^T f(y(t), t)e^{-at}dt \right\};$$ \hspace{1cm} (3.22)

hence

$$u(x, 0) = J_x(\nu), \hspace{1cm} \nu \text{ associated to } u.$$ \hspace{1cm} (3.23)

Similarly, using (3.19), we obtain

$$u(x, 0) = \inf \{ J_x(\nu) / \nu \text{ admissible impulse control} \}.$$ \hspace{1cm} (3.24)

Then, (3.23) and (3.24) give

$$u(x, 0) = u_0(x), \hspace{1cm} \text{optimal cost (3.4)},$$ \hspace{1cm} (3.25)

and the theorem is proved. \hspace{1cm} □

Remark 1. If the function $f(x, t)$ is Lipschitz continuous, so is the function $u(x, t)$. In this case, u is also the maximum solution of a classical quasi-variational inequality introduced by A. Bensoussan and J. L. Lions [2]. \hspace{1cm} □

Remark 2. This result can be extended for a function $k(\xi, x, t)$ instead of $k(\xi)$ appearing in the definition of cost (3.3). Clearly, we can replace the condition $\xi \in \mathbb{R}_+^N$ by $\xi \in \Lambda$, where Λ is a closed subset of \mathbb{R}_+^N. \hspace{1cm} □

Remark 3. Using the technique presented in this paper, we can improve the result obtained in [5]. \hspace{1cm} □

REFERENCES

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Current address: I.N.R.I.A., Boîte Postale 105, 78153 Le Chesnay Cedex, France