Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A generalization of Laplace's method


Author: Chii Ruey Hwang
Journal: Proc. Amer. Math. Soc. 82 (1981), 446-451
MSC: Primary 60B05; Secondary 28C20
MathSciNet review: 612737
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Q$ be Gaussian with mean 0 and covariance $ B$ in a separable Hilbert space. Analogous to Laplace's method, the weak limit (as $ \theta \downarrow 0$) $ P$ of $ \{ {P_\theta }\vert\theta > 0\} $, with $ (d{P_\theta }/dQ)(x) = {C_\theta }\exp ( - H(x)/\theta )$, is considered, where

$\displaystyle H(x) = \frac{1} {2}\langle Fx,x\rangle - 2\langle Fm,x\rangle ),$

$ F$ is s.a. nonnegative definite and bounded. If $ m \in \Re ({B^{1/2}})$, then $ P$ is Gaussian with mean $ m - {B^{1/2}}\pi {B^{ - 1/2}}m$ and covariance $ {B^{1/2}}\pi {B^{1/2}}$, where $ \pi $ is the projection onto $ \mathfrak{N}({B^{1/2}}F{B^{1/2}})$. Moreover $ P$ is the fiber measure of $ Q$ on $ m + \mathfrak{N}(F)$. Under stronger conditions, $ P$ is induced by an affine transformation.

References [Enhancements On Off] (What's this?)

  • [1] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons\ New York-London, 1963. MR 0188745 (32 #6181)
  • [2] Ulf Grenander, Probabilities on algebraic structures, Second edition, Almqvist & Wiksell, Stockholm; John Wiley & Sons Inc., New York-London, 1968. MR 0259969 (41 #4598)
  • [3] -, Lectures in pattern theory, vol. III (to appear).
  • [4] -, Solve the second limit problem in metric pattern theory, Report on Pattern Analysis No. 83, Div. of Appl. Math., Brown University, Providence, R. I., 1979.
  • [5] C. R. Hwang, Frozen patterns and minimal energy states, Ph. D. thesis, Brown University, Providence, R. I., 1978.
  • [6] -, Laplace's method revisited: Weak convergence of probability measures, Ann. Probability 8 (1980).
  • [7] A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover Publications, Inc., New York, N. Y., 1949. Translated by G. Gamow. MR 0029808 (10,666c)
  • [8] Paul Krée and Albert Tortrat, Désintégration d’une loi gaussienne 𝜇 dans une somme vectorielle, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A695–A697 (French). MR 0360994 (50 #13441)
  • [9] Balram S. Rajput, The support of Gaussian measures on Banach spaces, Teor. Verojatnost. i Primenen. 17 (1972), 775–782 (English, with Russian summary). MR 0324737 (48 #3086)
  • [10] F. Riesz and B. Nagy, Functional analysis, McGraw-Hill, New York, 1955.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B05, 28C20

Retrieve articles in all journals with MSC: 60B05, 28C20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1981-0612737-8
PII: S 0002-9939(1981)0612737-8
Keywords: Characteristic function, covariance operator, Gaussian measure, fiber measure, Hilbert space, Laplace's method, weak convergence
Article copyright: © Copyright 1981 American Mathematical Society